IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2398-d541890.html
   My bibliography  Save this article

Optimal Management of a Microgrid with Radiation and Wind-Speed Forecasting: A Case Study Applied to a Bioclimatic Building

Author

Listed:
  • Luis O. Polanco Vásquez

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán AC., Mérida 97205, Mexico)

  • Víctor M. Ramírez

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán AC., Mérida 97205, Mexico)

  • Diego Langarica Córdova

    (Ingeniería Electrónica, Facultad de Ciencias, UASLP, San Luis Potosí 78295, Mexico)

  • Juana López Redondo

    (Agrifood Campus of International Excellence (ceiA3) CIESOL Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain)

  • José Domingo Álvarez

    (Agrifood Campus of International Excellence (ceiA3) CIESOL Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain)

  • José Luis Torres-Moreno

    (Agrifood Campus of International Excellence (ceiA3) CIESOL Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain)

Abstract

An Energy Management System (EMS) that uses a Model Predictive Control (MPC) to manage the flow of the microgrids is described in this work. The EMS integrates both wind speed and solar radiation predictors by using a time series to perform the primary grid forecasts. At each sampling data measurement, the power of the photovoltaic system and wind turbine are predicted. Then, the MPC algorithm uses those predictions to obtain the optimal power flows of the microgrid elements and the main network. In this work, three time-series predictors are analyzed. As the results will show, the MPC strategy becomes a powerful energy management tool when it is integrated with the Double Exponential Smoothing (DES) predictor. This new scheme of integrating the DES method with an MPC presents a good management response in real-time and overcomes the results provided by the Optimal Power Flow method, which was previously proposed in the literature. For the case studies, the test microgrid located in the CIESOL bioclimatic building of the University of Almeria (Spain) is used.

Suggested Citation

  • Luis O. Polanco Vásquez & Víctor M. Ramírez & Diego Langarica Córdova & Juana López Redondo & José Domingo Álvarez & José Luis Torres-Moreno, 2021. "Optimal Management of a Microgrid with Radiation and Wind-Speed Forecasting: A Case Study Applied to a Bioclimatic Building," Energies, MDPI, vol. 14(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2398-:d:541890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petrollese, Mario & Valverde, Luis & Cocco, Daniele & Cau, Giorgio & Guerra, José, 2016. "Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid," Applied Energy, Elsevier, vol. 166(C), pages 96-106.
    2. Alberto Fichera & Elisa Marrasso & Maurizio Sasso & Rosaria Volpe, 2020. "Energy, Environmental and Economic Performance of an Urban Community Hybrid Distributed Energy System," Energies, MDPI, vol. 13(10), pages 1-19, May.
    3. Masako Numata & Masahiro Sugiyama & Gento Mogi, 2020. "Barrier Analysis for the Deployment of Renewable-Based Mini-Grids in Myanmar Using the Analytic Hierarchy Process (AHP)," Energies, MDPI, vol. 13(6), pages 1-16, March.
    4. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    5. Nelson, James R. & Johnson, Nathan G., 2020. "Model predictive control of microgrids for real-time ancillary service market participation," Applied Energy, Elsevier, vol. 269(C).
    6. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    7. Fabrice K/bidi & Cédric Damour & Dominique Grondin & Mickaël Hilairet & Michel Benne, 2021. "Power Management of a Hybrid Micro-Grid with Photovoltaic Production and Hydrogen Storage," Energies, MDPI, vol. 14(6), pages 1-15, March.
    8. Andreu Cecilia & Javier Carroquino & Vicente Roda & Ramon Costa-Castelló & Félix Barreras, 2020. "Optimal Energy Management in a Standalone Microgrid, with Photovoltaic Generation, Short-Term Storage, and Hydrogen Production," Energies, MDPI, vol. 13(6), pages 1-24, March.
    9. Yassuda Yamashita, Daniela & Vechiu, Ionel & Gaubert, Jean-Paul, 2021. "Two-level hierarchical model predictive control with an optimised cost function for energy management in building microgrids," Applied Energy, Elsevier, vol. 285(C).
    10. Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
    11. Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2013. "Short-term solar irradiance forecasting using exponential smoothing state space model," Energy, Elsevier, vol. 55(C), pages 1104-1113.
    12. Leonori, Stefano & Martino, Alessio & Frattale Mascioli, Fabio Massimo & Rizzi, Antonello, 2020. "Microgrid Energy Management Systems Design by Computational Intelligence Techniques," Applied Energy, Elsevier, vol. 277(C).
    13. Arias-Rosales, Andrés & LeDuc, Philip R., 2020. "Modeling the transmittance of anisotropic diffuse radiation towards estimating energy losses in solar panel coverings," Applied Energy, Elsevier, vol. 268(C).
    14. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    15. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Zhang, Gang & Yang, Dazhi & Galanis, George & Androulakis, Emmanouil, 2022. "Solar forecasting with hourly updated numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Juan Moreno-Castro & Victor Samuel Ocaña Guevara & Lesyani Teresa León Viltre & Yandi Gallego Landera & Oscar Cuaresma Zevallos & Miguel Aybar-Mejía, 2023. "Microgrid Management Strategies for Economic Dispatch of Electricity Using Model Predictive Control Techniques: A Review," Energies, MDPI, vol. 16(16), pages 1-24, August.
    4. Zhou, Yuan & Wang, Jiangjiang & Liu, Yi & Yan, Rujing & Ma, Yanpeng, 2021. "Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system," Energy, Elsevier, vol. 233(C).
    5. Rocha, Helder R.O. & Honorato, Icaro H. & Fiorotti, Rodrigo & Celeste, Wanderley C. & Silvestre, Leonardo J. & Silva, Jair A.L., 2021. "An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes," Applied Energy, Elsevier, vol. 282(PA).
    6. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    7. Huo, Yuchong & Bouffard, François & Joós, Géza, 2022. "Integrating learning and explicit model predictive control for unit commitment in microgrids," Applied Energy, Elsevier, vol. 306(PA).
    8. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    9. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    10. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    11. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    12. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    13. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    14. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    15. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    16. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    17. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    18. Huxley, O.T. & Taylor, J. & Everard, A. & Briggs, J. & Tilley, K. & Harwood, J. & Buckley, A., 2022. "The uncertainties involved in measuring national solar photovoltaic electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Fathy, Ahmed, 2023. "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles," Applied Energy, Elsevier, vol. 334(C).
    20. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    More about this item

    Keywords

    microgrid; EMS; MPC; control; simulation;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2398-:d:541890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.