IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v258y2020ics0306261919317672.html
   My bibliography  Save this article

Borehole water level model for photovoltaic water pumping systems

Author

Listed:
  • Vezin, T.
  • Meunier, S.
  • Quéval, L.
  • Cherni, J.A.
  • Vido, L.
  • Darga, A.
  • Dessante, P.
  • Kitanidis, P.K.
  • Marchand, C.

Abstract

Using photovoltaic energy to pump water from aquifers is an interesting solution to circumvent the low electricity grid coverage and provide improved domestic water access in off-grid areas in sub-Saharan Africa. When pumping and during the lifetime of a pumping installation, the borehole water level changes, which impacts the amount of energy required to extract water from the aquifer. In order to address alterations in energy requirements, this article develops a data-driven borehole water level model adapted to photovoltaic water pumping systems (PVWPS). The proposed model is applicable to all types of PVWPS and aquifers. It has been validated against experimental data from a pilot PVWPS located in a rural off-grid village in Burkina Faso having achieved more than 97% accuracy. Thanks to this borehole model, we have been able to assess the influence of the variability of groundwater resources on both the performance of PVWPS and on their optimal sizing. We show that the variation of the static water level can require a increase of the peak power of the PV modules of up to 100%. Nonetheless, the effect of the drawdown due to the pumping is negligible. This study can help companies, governments and non-governmental organizations to better take into account the variability and the sustainability of groundwater resources in the optimal sizing and monitoring of PVWPS.

Suggested Citation

  • Vezin, T. & Meunier, S. & Quéval, L. & Cherni, J.A. & Vido, L. & Darga, A. & Dessante, P. & Kitanidis, P.K. & Marchand, C., 2020. "Borehole water level model for photovoltaic water pumping systems," Applied Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317672
    DOI: 10.1016/j.apenergy.2019.114080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jun & Liu, Jiahong & Campana, Pietro Elia & Zhang, Ruiqiang & Yan, Jinyue & Gao, Xuerui, 2014. "Model of evapotranspiration and groundwater level based on photovoltaic water pumping system," Applied Energy, Elsevier, vol. 136(C), pages 1132-1137.
    2. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    3. Gao, Xuerui & Liu, Jiahong & Zhang, Jun & Yan, Jinyue & Bao, Shujun & Xu, He & Qin, Tao, 2013. "Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table," Applied Energy, Elsevier, vol. 105(C), pages 182-193.
    4. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    5. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    6. Ould-Amrouche, S. & Rekioua, D. & Hamidat, A., 2010. "Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential," Applied Energy, Elsevier, vol. 87(11), pages 3451-3459, November.
    7. Kenneth Lee & Eric Brewer & Carson Christiano & Francis Meyo & Edward Miguel & Matthew Podolsky & Javier Rosa & Catherine Wolfram, 2014. "Barriers to Electrification for "Under Grid" Households in Rural Kenya," NBER Working Papers 20327, National Bureau of Economic Research, Inc.
    8. Qoaider, Louy & Steinbrecht, Dieter, 2010. "Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions," Applied Energy, Elsevier, vol. 87(2), pages 427-435, February.
    9. Meunier, Simon & Heinrich, Matthias & Quéval, Loïc & Cherni, Judith A. & Vido, Lionel & Darga, Arouna & Dessante, Philippe & Multon, Bernard & Kitanidis, Peter K. & Marchand, Claude, 2019. "A validated model of a photovoltaic water pumping system for off-grid rural communities," Applied Energy, Elsevier, vol. 241(C), pages 580-591.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faakhar Raza & Muhammad Tamoor & Sajjad Miran & Waseem Arif & Tayybah Kiren & Waseem Amjad & Muhammad Imtiaz Hussain & Gwi-Hyun Lee, 2022. "The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study," Energies, MDPI, vol. 15(3), pages 1-21, February.
    2. Camille Soenen & Vincent Reinbold & Simon Meunier & Judith A. Cherni & Arouna Darga & Philippe Dessante & Loïc Quéval, 2021. "Comparison of Tank and Battery Storages for Photovoltaic Water Pumping," Energies, MDPI, vol. 14(9), pages 1-16, April.
    3. Ehtisham Lodhi & Fei-Yue Wang & Gang Xiong & Ghulam Ali Mallah & Muhammad Yaqoob Javed & Tariku Sinshaw Tamir & David Wenzhong Gao, 2021. "A Dragonfly Optimization Algorithm for Extracting Maximum Power of Grid-Interfaced PV Systems," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    4. Mirza, Adeel Feroz & Mansoor, Majad & Zhan, Keyu & Ling, Qiang, 2021. "High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance," Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    2. Meunier, Simon & Heinrich, Matthias & Quéval, Loïc & Cherni, Judith A. & Vido, Lionel & Darga, Arouna & Dessante, Philippe & Multon, Bernard & Kitanidis, Peter K. & Marchand, Claude, 2019. "A validated model of a photovoltaic water pumping system for off-grid rural communities," Applied Energy, Elsevier, vol. 241(C), pages 580-591.
    3. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    4. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    5. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    6. Zavala, V. & López-Luque, R. & Reca, J. & Martínez, J. & Lao, M.T., 2020. "Optimal management of a multisector standalone direct pumping photovoltaic irrigation system," Applied Energy, Elsevier, vol. 260(C).
    7. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao, 2017. "Research and current status of the solar photovoltaic water pumping system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 440-458.
    8. López-Luque, R. & Reca, J. & Martínez, J., 2015. "Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards," Applied Energy, Elsevier, vol. 149(C), pages 13-23.
    9. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    10. Olsson, Alexander & Campana, Pietro Elia & Lind, Mårten & Yan, Jinyue, 2014. "Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands," Applied Energy, Elsevier, vol. 136(C), pages 1145-1154.
    11. Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.
    12. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    13. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    14. Sajjad Miran & Muhammad Tamoor & Tayybah Kiren & Faakhar Raza & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    15. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    16. Boutelhig, Azzedine & Hanini, Salah & Arab, Amar Hadj, 2018. "Geospatial characteristics investigation of suitable areas for photovoltaic water pumping erections, in the southern region of Ghardaia, Algeria," Energy, Elsevier, vol. 165(PA), pages 235-245.
    17. Gao, Xuerui & Liu, Jiahong & Zhang, Jun & Yan, Jinyue & Bao, Shujun & Xu, He & Qin, Tao, 2013. "Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table," Applied Energy, Elsevier, vol. 105(C), pages 182-193.
    18. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    19. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    20. Camille Soenen & Vincent Reinbold & Simon Meunier & Judith A. Cherni & Arouna Darga & Philippe Dessante & Loïc Quéval, 2021. "Comparison of Tank and Battery Storages for Photovoltaic Water Pumping," Energies, MDPI, vol. 14(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.