IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp1073-1084.html
   My bibliography  Save this article

Outdoor performance evaluation of a holographic solar concentrator optimized for building integration

Author

Listed:
  • Marín-Sáez, Julia
  • Chemisana, Daniel
  • Atencia, Jesús
  • Collados, María-Victoria

Abstract

A holographic solar concentrating system with a Silicon photovoltaic (PV) cell is designed, constructed and characterized. The design is based on a previous system and is further optimized. The cylindrical holographic lenses forming the concentrating system are modeled with a ray-tracing algorithm based on Coupled Wave Theory and are recorded on Bayfol® HX photopolymer. Measurements are carried out outdoors with solar illumination and provide a current density of 146 mA/cm2 with a current concentration factor of 3.48, validating the theoretical simulations results (172 mA/cm2 and 3.81, respectively). The effect of the temperature on the performance of the Holographic Optical Elements (HOEs) is studied and taking it into account by assuming a 1.3° tilt of the fringes of the hologram caused by thermal expansion (which is reversible if the HOEs are encapsulated and sealed) provides simulation results closer to the experimental ones (a current density value of 155 mA/cm2 and current concentration of 3.43). The ageing of HOEs recorded in Bayfol® HX photopolymer due to the outdoor environmental conditions is also analyzed, revealing the need of encapsulation and sealing.

Suggested Citation

  • Marín-Sáez, Julia & Chemisana, Daniel & Atencia, Jesús & Collados, María-Victoria, 2019. "Outdoor performance evaluation of a holographic solar concentrator optimized for building integration," Applied Energy, Elsevier, vol. 250(C), pages 1073-1084.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1073-1084
    DOI: 10.1016/j.apenergy.2019.05.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919309286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Collados, M. Victoria & Chemisana, Daniel & Atencia, Jesús, 2016. "Holographic solar energy systems: The role of optical elements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 130-140.
    2. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    3. Julia Marín-Sáez & Daniel Chemisana & Álex Moreno & Alberto Riverola & Jesús Atencia & María-Victoria Collados, 2016. "Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications," Energies, MDPI, vol. 9(8), pages 1-19, July.
    4. Chemisana, Daniel & Collados, Ma Victoria & Quintanilla, Manuel & Atencia, Jesús, 2013. "Holographic lenses for building integrated concentrating photovoltaics," Applied Energy, Elsevier, vol. 110(C), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan, Qingdong & Li, Guiqiang & Jiang, Bin & Zhao, Xudong & Ji, Jie & Pei, Gang, 2021. "Overall outdoor experiments on daylighting performance of a self-regulating photovoltaic/daylighting system in different seasons," Applied Energy, Elsevier, vol. 286(C).
    2. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    3. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Marín-Sáez & Daniel Chemisana & Álex Moreno & Alberto Riverola & Jesús Atencia & María-Victoria Collados, 2016. "Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications," Energies, MDPI, vol. 9(8), pages 1-19, July.
    2. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2014. "Rotationally asymmetrical compound parabolic concentrator for concentrating photovoltaic applications," Applied Energy, Elsevier, vol. 136(C), pages 363-372.
    3. Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2021. "Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art," Energies, MDPI, vol. 14(11), pages 1-20, May.
    4. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    5. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    7. Wang, Richard & Lam, Chor-Man & Hsu, Shu-Chien & Chen, Jieh-Haur, 2019. "Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong," Applied Energy, Elsevier, vol. 250(C), pages 760-775.
    8. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Martínez, E. & Latorre-Biel, J.I. & Jiménez, E. & Sanz, F. & Blanco, J., 2018. "Life cycle assessment of a wind farm repowering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 260-271.
    10. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Siviter, J. & Montecucco, A. & Knox, A.R. & Baig, H. & Mallick, T.K. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells," Applied Energy, Elsevier, vol. 202(C), pages 755-771.
    11. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    13. Chemisana, D. & Rosell, J.I. & Riverola, A. & Lamnatou, Chr., 2016. "Experimental performance of a Fresnel-transmission PVT concentrator for building-façade integration," Renewable Energy, Elsevier, vol. 85(C), pages 564-572.
    14. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    16. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    17. Elfeky, Karem Elsayed & Wang, Qiuwang, 2023. "Techno-environ-economic assessment of photovoltaic and CSP with storage systems in China and Egypt under various climatic conditions," Renewable Energy, Elsevier, vol. 215(C).
    18. Aseri, Tarun Kumar & Sharma, Chandan & Kandpal, Tara C., 2021. "Estimation of capital costs and techno-economic appraisal of parabolic trough solar collector and solar power tower based CSP plants in India for different condenser cooling options," Renewable Energy, Elsevier, vol. 178(C), pages 344-362.
    19. Nektarios Arnaoutakis & Andreas P. Vouros & Maria Milousi & Yannis G. Caouris & Giorgos Panaras & Antonios Tourlidakis & Kyriakos Vafiadis & Giouli Mihalakakou & Christos S. Garoufalis & Zacharias Fro, 2022. "Design, Energy, Environmental and Cost Analysis of an Integrated Collector Storage Solar Water Heater Based on Multi-Criteria Methodology," Energies, MDPI, vol. 15(5), pages 1-21, February.
    20. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1073-1084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.