Assessment of char property on tar catalytic reforming in a fluidized bed reactor for adopting a two-stage gasification process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.04.122
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shen, Yafei, 2015. "Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 281-295.
- Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
- Chen, Zhaohui & Li, Yunjia & Lai, Dengguo & Geng, Sulong & Zhou, Qi & Gao, Shiqiu & Xu, Guangwen, 2018. "Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas," Applied Energy, Elsevier, vol. 215(C), pages 348-355.
- Ravenni, Giulia & Sárossy, Zsuzsa & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2018. "Activity of chars and activated carbons for removal and decomposition of tar model compounds – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1044-1056.
- Zhang, Qian & Li, Qingfeng & Zhang, Linxian & Wang, Zhiqing & Jing, Xuliang & Yu, Zhongliang & Song, Shuangshuang & Fang, Yitian, 2014. "Preliminary study on co-gasification behavior of deoiled asphalt with coal and biomass," Applied Energy, Elsevier, vol. 132(C), pages 426-434.
- Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
- Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
- Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
- Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
- Zhang, Zhikun & Liu, Lina & Shen, Boxiong & Wu, Chunfei, 2018. "Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1086-1109.
- Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
- Jeong, Yong-Seong & Choi, Young-Kon & Kim, Joo-Sik, 2019. "Three-stage air gasification of waste polyethylene: In-situ regeneration of active carbon used as a tar removal additive," Energy, Elsevier, vol. 166(C), pages 335-342.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
- Šuhaj, Patrik & Husár, Jakub & Haydary, Juma & Annus, Július, 2022. "Experimental verification of a pilot pyrolysis/split product gasification (PSPG) unit," Energy, Elsevier, vol. 244(PA).
- Jiang, Yuan & Zong, Peijie & Bao, Yuan & Zhang, Xin & Wei, Haixin & Tian, Bin & Tian, Yuanyu & Qiao, Yingyun & Zhang, Juntao, 2022. "Catalytic conversion of gaseous tar using coal char catalyst in the two-stage downer reactor," Energy, Elsevier, vol. 242(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Shuxiao & Shan, Rui & Lu, Tao & Zhang, Yuyuan & Yuan, Haoran & Chen, Yong, 2020. "Pyrolysis char derived from waste peat for catalytic reforming of tar model compound," Applied Energy, Elsevier, vol. 263(C).
- Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
- Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
- Chan, Wei Ping & Veksha, Andrei & Lei, Junxi & Oh, Wen-Da & Dou, Xiaomin & Giannis, Apostolos & Lisak, Grzegorz & Lim, Teik-Thye, 2019. "A hot syngas purification system integrated with downdraft gasification of municipal solid waste," Applied Energy, Elsevier, vol. 237(C), pages 227-240.
- Gu, Jing & Wang, Shuxiao & Lu, Tao & Wu, Yufeng & Yuan, Haoran & Chen, Yong, 2020. "Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene," Renewable Energy, Elsevier, vol. 160(C), pages 964-973.
- Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
- Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
- Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
- Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Parrillo, F. & Ruoppolo, G. & Arena, U., 2020. "The role of activated carbon size in the catalytic cracking of naphthalene," Energy, Elsevier, vol. 190(C).
- Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
- Fantozzi, F. & Frassoldati, A. & Bartocci, P. & Cinti, G. & Quagliarini, F. & Bidini, G. & Ranzi, E.M., 2016. "An experimental and kinetic modeling study of glycerol pyrolysis," Applied Energy, Elsevier, vol. 184(C), pages 68-76.
- Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
- Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
- Lin, Qunqing & Zhang, Shuping & Wang, Jiaxing & Yin, Haoxin, 2021. "Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar," Renewable Energy, Elsevier, vol. 174(C), pages 188-198.
- David, E. & Kopač, J., 2021. "Efficient removal of tar from gas fraction resulting from thermo-chemical conversion of biomass using coal fly ash–based catalysts," Renewable Energy, Elsevier, vol. 171(C), pages 1290-1302.
- Zhang, Shuping & Yin, Haoxin & Wang, Jiaxing & Zhu, Shuguang & Xiong, Yuanquan, 2021. "Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts," Energy, Elsevier, vol. 216(C).
- Cheng, Long & Wu, Zhiqiang & Zhang, Zhiguo & Guo, Changqing & Ellis, Naoko & Bi, Xiaotao & Paul Watkinson, A. & Grace, John R., 2020. "Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char," Applied Energy, Elsevier, vol. 258(C).
- Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Hydrogen production from steam gasification of polyethylene using a two-stage gasifier and active carbon," Applied Energy, Elsevier, vol. 262(C).
More about this item
Keywords
Tar; Catalytic reforming; Two-stage gasification; Fluidized bed; Char property;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:248:y:2019:i:c:p:115-125. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.