Microbial electrolysis cells using complex substrates achieve high performance via continuous feeding-based control of reactor concentrations and community structure
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.02.048
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Luo, Shuai & Jain, Akshay & Aguilera, Anibal & He, Zhen, 2017. "Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell," Applied Energy, Elsevier, vol. 206(C), pages 879-886.
- Sangeetha, Thangavel & Guo, Zechong & Liu, Wenzong & Gao, Lei & Wang, Ling & Cui, Minhua & Chen, Chuan & Wang, Aijie, 2017. "Energy recovery evaluation in an up flow microbial electrolysis coupled anaerobic digestion (ME-AD) reactor: Role of electrode positions and hydraulic retention times," Applied Energy, Elsevier, vol. 206(C), pages 1214-1224.
- Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
- Jannelli, Nicole & Anna Nastro, Rosa & Cigolotti, Viviana & Minutillo, Mariagiovanna & Falcucci, Giacomo, 2017. "Low pH, high salinity: Too much for microbial fuel cells?," Applied Energy, Elsevier, vol. 192(C), pages 543-550.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Satinover, Scott J. & Schell, Dan & Borole, Abhijeet P., 2020. "Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products," Applied Energy, Elsevier, vol. 259(C).
- René Alejandro Flores-Estrella & Victor Alcaraz-Gonzalez & Andreas Haarstrick, 2022. "A Catalytic Effectiveness Factor for a Microbial Electrolysis Cell Biofilm Model," Energies, MDPI, vol. 15(11), pages 1-18, June.
- Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
- Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
- Satinover, Scott J. & Schell, Dan & Borole, Abhijeet P., 2020. "Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products," Applied Energy, Elsevier, vol. 259(C).
- Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Hu, Xiaoyi & Tan, Xinru & Shi, Xiaomin & Liu, Wenjun & Ouyang, Tiancheng, 2023. "An integrated assessment of microfluidic microbial fuel cell subjected to vibration excitation," Applied Energy, Elsevier, vol. 336(C).
- Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
- Karla Lopez & Vitoria F. C. Leme & Marcin Warzecha & Paul C. Davidson, 2024. "Wastewater Nutrient Recovery via Fungal and Nitrifying Bacteria Treatment," Agriculture, MDPI, vol. 14(4), pages 1-12, April.
- Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
- Iain S. Michie & Richard M. Dinsdale & Alan J. Guwy & Giuliano C. Premier, 2020. "Electrogenic Biofilm Development Determines Charge Accumulation and Resistance to pH Perturbation," Energies, MDPI, vol. 13(14), pages 1-20, July.
- Vesselin Krassimirov Krastev & Giacomo Falcucci, 2018. "Simulating Engineering Flows through Complex Porous Media via the Lattice Boltzmann Method," Energies, MDPI, vol. 11(4), pages 1-14, March.
- Miguel Ángel López Zavala & Pamela Renée Torres Delenne & Omar Israel González Peña, 2018. "Improvement of Wastewater Treatment Performance and Power Generation in Microbial Fuel Cells by Enhancing Hydrolysis and Acidogenesis, and by Reducing Internal Losses," Energies, MDPI, vol. 11(9), pages 1-14, September.
- Duarte, Kimberley D.Z. & Frattini, Domenico & Kwon, Yongchai, 2019. "High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode," Applied Energy, Elsevier, vol. 256(C).
- de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
- Marks, Stanislaw & Makinia, Jacek & Fernandez-Morales, Francisco Jesus, 2019. "Performance of microbial fuel cells operated under anoxic conditions," Applied Energy, Elsevier, vol. 250(C), pages 1-6.
- Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
- Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).
- Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
- SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
More about this item
Keywords
Microbial electrolysis; Process design; Biomass; Hydrogen; Microbial community;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:608-616. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.