IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp928-937.html
   My bibliography  Save this article

Hybrid physical-chemical absorption process for carbon capture with strategy of high-pressure absorption/medium-pressure desorption

Author

Listed:
  • Huang, Weijia
  • Zheng, Danxing
  • Xie, Hui
  • Li, Yun
  • Wu, Weize

Abstract

Based on the conception of controlling the total energy consumption of CO2 capture process, this work proposed a hybrid physical-chemical absorption process, combined the traditional methods of physical absorption and chemical absorption, and adopted the strategy of high-pressure absorption/medium-pressure desorption, in order to achieve the reduction of total energy consumption of CO2 capture technology. The proposed process consisted of three main steps: physical absorption and desorption, chemical absorption and desorption, and compression with intercooling. Commercially used dimethyl ether of polyethylene glycol and methyl diethanolamine were selected as the physical absorbent and chemical absorbent, respectively. The process scheme was constructed and simulated for capturing CO2 from industrial high-pressure and CO2-rich gas to liquid CO2 product under pressure of 15 MPa. The total energy consumption was 0.1810 MWh·t−1 CO2, which was markedly lower than that of the traditional methods. Sensitivity analyses were carried out to investigate the effects of the key system parameters, including the desorption pressure and the allocation of the capture rate between the physical absorption and chemical absorption, on the performance of the hybrid physical-chemical absorption process. Additionally, the mechanism of energy conservation of hybrid physical-chemical absorption process was further elaborated in a strategy of high-pressure absorption/medium-pressure desorption.

Suggested Citation

  • Huang, Weijia & Zheng, Danxing & Xie, Hui & Li, Yun & Wu, Weize, 2019. "Hybrid physical-chemical absorption process for carbon capture with strategy of high-pressure absorption/medium-pressure desorption," Applied Energy, Elsevier, vol. 239(C), pages 928-937.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:928-937
    DOI: 10.1016/j.apenergy.2019.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    2. Park, Sung Ho & Lee, Seung Jong & Lee, Jin Wook & Chun, Sung Nam & Lee, Jung Bin, 2015. "The quantitative evaluation of two-stage pre-combustion CO2 capture processes using the physical solvents with various design parameters," Energy, Elsevier, vol. 81(C), pages 47-55.
    3. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
    4. Hu, Yukun & Yan, Jinyue & Li, Hailong, 2012. "Effects of flue gas recycle on oxy-coal power generation systems," Applied Energy, Elsevier, vol. 97(C), pages 255-263.
    5. Li, Bao-Hong & Zhang, Nan & Smith, Robin, 2016. "Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution," Applied Energy, Elsevier, vol. 161(C), pages 707-717.
    6. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
    7. Hu, Yukun & Yan, Jinyue, 2012. "Characterization of flue gas in oxy-coal combustion processes for CO2 capture," Applied Energy, Elsevier, vol. 90(1), pages 113-121.
    8. Li, Hailong & Ditaranto, Mario & Yan, Jinyue, 2012. "Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles," Applied Energy, Elsevier, vol. 97(C), pages 164-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Wen, Chuang & Li, Bo & Ding, Hongbing & Akrami, Mohammad & Zhang, Haoran & Yang, Yan, 2022. "Thermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processing," Applied Energy, Elsevier, vol. 310(C).
    3. Zhou, Chenyang & Zhang, Chen & Zhang, Teng & Zhang, Jingfeng & Ma, Pengfei & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Single-atom solutions promote carbon dioxide capture," Applied Energy, Elsevier, vol. 332(C).
    4. Parvasi, P. & Jokar, S.M. & Shamseddini, A. & Babapoor, A. & Mirzaie, F. & Abbasfard, H. & Basile, A., 2020. "A novel recovery loop for reducing greenhouse gas emission: Simultaneous production of syngas and pure hydrogen in a membrane reformer," Renewable Energy, Elsevier, vol. 153(C), pages 130-142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    2. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    3. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    4. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    5. Choi, Munkyoung & Cho, Minki & Lee, J.W., 2016. "Empirical formula for the mass flux in chemical absorption of CO2 with ammonia droplets," Applied Energy, Elsevier, vol. 164(C), pages 1-9.
    6. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    7. Hu, Yukun & Li, Xun & Li, Hailong & Yan, Jinyue, 2013. "Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems," Applied Energy, Elsevier, vol. 112(C), pages 747-754.
    8. Wang, Fu & Zhao, Jun & Li, Hailong & Deng, Shuai & Yan, Jinyue, 2017. "Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors," Applied Energy, Elsevier, vol. 185(P2), pages 1471-1480.
    9. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    10. Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2014. "Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems," Applied Energy, Elsevier, vol. 113(C), pages 477-487.
    11. Guo, Junjun & Liu, Zhaohui & Hu, Fan & Li, Pengfei & Luo, Wei & Huang, Xiaohong, 2018. "A compatible configuration strategy for burner streams in a 200 MWe tangentially fired oxy-fuel combustion boiler," Applied Energy, Elsevier, vol. 220(C), pages 59-69.
    12. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    13. Xu, Yishu & Liu, Xiaowei & Zhou, Zijian & Sheng, Lei & Wang, Chao & Xu, Minghou, 2014. "The role of steam in silica vaporization and ultrafine particulate matter formation during wet oxy-coal combustion," Applied Energy, Elsevier, vol. 133(C), pages 144-151.
    14. Zhang, Yanwei & Zhu, Qiaoqiao & Lin, Xiangdong & Xu, Zemin & Liu, Jianbo & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2013. "A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources," Applied Energy, Elsevier, vol. 108(C), pages 1-7.
    15. Chen, Wei-Hsin & Chen, Shu-Mi & Hung, Chen-I, 2013. "Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach," Applied Energy, Elsevier, vol. 111(C), pages 731-741.
    16. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    17. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    18. Huang, Qingxi & Yao, Jinduo & Hu, Yukun & Liu, Shengchun & Li, Hailong & Sun, Qie, 2022. "Integrating compressed CO2 energy storage in an oxy-coal combustion power plant with CO2 capture," Energy, Elsevier, vol. 254(PC).
    19. Hu, Yukun & Li, Hailong & Yan, Jinyue, 2014. "Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion," Applied Energy, Elsevier, vol. 130(C), pages 543-551.
    20. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:928-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.