IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp540-550.html
   My bibliography  Save this article

A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks

Author

Listed:
  • Hussain, Sajid
  • AlAlili, Ali

Abstract

Assessment of solar potential over a location of interest is an important step towards the successful planning of renewable energy projects. However, solar data are not available for every point of interest due to the absence of meteorological stations and sophisticated solar sensors, so solar radiation has to be estimated using models. This paper presents a hybrid technique to improve the performance of a widely used modeling technique i.e. artificial neural network (ANN). Four different architectures of ANN, namely: multilayer perceptron (MLP), Adaptive neuro-fuzzy inference system (ANFIS), Nonlinear autoregressive recurrent exogenous neural network (NARX), and generalized regression neural networks (GRNN), are used in this study. A wavelet multiresolution analysis is applied to decompose the complex meteorological signals into relatively simple parts, wavelet sub-series, using discrete wavelet transformation (DWT) algorithm. The wavelet sub-series are modeled by the ANN models and reconstructed to estimate the original signal. Hence, enhancing the learning process of these models. Four meteorological parameters, namely: temperature (T), relative humidity (RH), wind speed (WS), and sunshine duration (SSD), are used to mode the global horizontal irradiation (GHI) over Abu Dhabi, the United Arab Emirates. The proposed approach is compared to standalone ANN models and validated using well-known statistical validation metrics including coefficient of determination (R2), root mean square error (RMSE), mean bias error (MBE), mean absolute percentage error (MAPE), and t-statistics. In addition, wavelet cross spectrum (WCS) is used as a visual indicator of the model performance in time, frequency, and phase domains. The results show that using the proposed strategy considerably improves the modeling performance of the ANN with a maximum improvement of 6.84% in R2 for MLP. In addition, minimum RMSE of 2.78% is observed for GRNN.

Suggested Citation

  • Hussain, Sajid & AlAlili, Ali, 2017. "A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks," Applied Energy, Elsevier, vol. 208(C), pages 540-550.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:540-550
    DOI: 10.1016/j.apenergy.2017.09.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191731379X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:540-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.