IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp208-217.html
   My bibliography  Save this article

Models of control valve and actuation system for dynamics analysis of steam turbines

Author

Listed:
  • Pondini, Maddalena
  • Colla, Valentina
  • Signorini, Annamaria

Abstract

The paper describes a study conducted on the control valve and the actuation systems of a Steam Turbine. These devices are of utmost importance, as they rule the machine final power production and rotational speed, thus their accurate modelling is fundamental for a valuable dynamic analysis of the whole system. In particular, a dynamic model developed in the Matlab/Simulink environment is proposed, which supports the analysis of the operational stability of the hydro-mechanical system as well as the failure modes that it may face during operation. The model has been successfully validated through specific field tests conducted on the actuation system at a cogeneration plant located in the General Electric Oil & Gas - Nuovo Pignone facility of Florence. The proposed work also highlights the requirements that new actuation technologies should fulfill in order to meet control valve system performance criteria and is thus useful as both a methodological approach and a “virtual benchmark” allowing to validate in advance any new actuation system.

Suggested Citation

  • Pondini, Maddalena & Colla, Valentina & Signorini, Annamaria, 2017. "Models of control valve and actuation system for dynamics analysis of steam turbines," Applied Energy, Elsevier, vol. 207(C), pages 208-217.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:208-217
    DOI: 10.1016/j.apenergy.2017.05.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917306219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    2. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Montes, M.J. & Rovira, A. & Muñoz, M. & Martínez-Val, J.M., 2011. "Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors," Applied Energy, Elsevier, vol. 88(9), pages 3228-3238.
    4. Desideri, U. & Zepparelli, F. & Morettini, V. & Garroni, E., 2013. "Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations," Applied Energy, Elsevier, vol. 102(C), pages 765-784.
    5. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    6. Vasallo, Manuel Jesús & Bravo, José Manuel, 2016. "A MPC approach for optimal generation scheduling in CSP plants," Applied Energy, Elsevier, vol. 165(C), pages 357-370.
    7. Neves, Diana & Brito, Miguel C. & Silva, Carlos A., 2016. "Impact of solar and wind forecast uncertainties on demand response of isolated microgrids," Renewable Energy, Elsevier, vol. 87(P2), pages 1003-1015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    2. Salman Khalid & Jinwoo Song & Izaz Raouf & Heung Soo Kim, 2023. "Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of Intelligent Techniques," Mathematics, MDPI, vol. 11(8), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    2. Du, Ershun & Zhang, Ning & Hodge, Bri-Mathias & Kang, Chongqing & Kroposki, Benjamin & Xia, Qing, 2018. "Economic justification of concentrating solar power in high renewable energy penetrated power systems," Applied Energy, Elsevier, vol. 222(C), pages 649-661.
    3. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    4. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    5. Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
    6. Elfeky, Karem Elsayed & Wang, Qiuwang, 2023. "Techno-environ-economic assessment of photovoltaic and CSP with storage systems in China and Egypt under various climatic conditions," Renewable Energy, Elsevier, vol. 215(C).
    7. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
    8. Dettori, S. & Iannino, V. & Colla, V. & Signorini, A., 2018. "An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications," Applied Energy, Elsevier, vol. 227(C), pages 655-664.
    9. Burhan, Muhammad & Oh, Seung Jin & Chua, Kian Jon Ernest & Ng, Kim Choon, 2017. "Solar to hydrogen: Compact and cost effective CPV field for rooftop operation and hydrogen production," Applied Energy, Elsevier, vol. 194(C), pages 255-266.
    10. Ancona, M.A. & Bianchi, M. & Diolaiti, E. & Giannuzzi, A. & Marano, B. & Melino, F. & Peretto, A., 2017. "A novel solar concentrator system for combined heat and power application in residential sector," Applied Energy, Elsevier, vol. 185(P2), pages 1199-1209.
    11. Hairat, Manish Kumar & Ghosh, Sajal, 2017. "100GW solar power in India by 2022 – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1041-1050.
    12. Mohammadi, Kasra & Goudarzi, Navid, 2018. "Association of direct normal irradiance with El Niño Southern Oscillation and its consequence on concentrated solar power production in the US Southwest," Applied Energy, Elsevier, vol. 212(C), pages 1126-1137.
    13. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    14. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    15. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    16. Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
    17. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    18. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    19. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2024. "Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems," Energies, MDPI, vol. 17(3), pages 1-12, January.
    20. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:208-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.