IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp10-26.html
   My bibliography  Save this article

Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics

Author

Listed:
  • Wang, Chuan
  • Shi, Weidong
  • Wang, Xikun
  • Jiang, Xiaoping
  • Yang, Yang
  • Li, Wei
  • Zhou, Ling

Abstract

This paper proposes a method to optimize the design of a typical multistage centrifugal pump based on energy loss model and Computational Fluid Dynamics (ELM/CFD). Different grid numbers, turbulence models, convergence precisions, and surface roughness are calculated for a typical multistage centrifugal pump. External characteristic experiments are also conducted to benchmark the numerical simulation. Based on the results, the ELM/CFD method was established including various kinds of energy loss in the pump, such as disk friction loss, volumetric leakage loss, interstage leakage loss as well as the hydraulic loss, which occurred at inlet section, outlet section, impeller, diffuser and pump cavity, respectively. The interactive relationships among the different types of energy losses were systematically assessed. Applying suitable setting methods for numerical calculation renders more credible results, and ensuring the integrity of the calculation model is the key contributor to the accuracy of the results. The interstage leakage loss is converted by the disk friction loss; thus, they are positively correlated, that is, the disk friction loss can be reduced by decreasing the interstage leakage loss. Concurrently, the volumetric leakage loss is negatively correlated with the disk friction loss; thus, increasing the volumetric leakage loss can effectively reduce the disk friction loss. The increment of the volumetric leakage loss is greater than the decrement of the disk friction loss for general centrifugal pumps. This relationship between these types of losses, however, does not apply to pumps with significantly low specific speed. Therefore, reducing the volumetric leakage and interstage leakage losses is the most effective technique to increase the efficiency of general centrifugal pumps. The impeller should be designed according to the maximum flow design method, because the inevitable volumetric leakage loss will improve the pump efficiency under rated flow condition. Several methods have been proposed to improve the pump efficiency.

Suggested Citation

  • Wang, Chuan & Shi, Weidong & Wang, Xikun & Jiang, Xiaoping & Yang, Yang & Li, Wei & Zhou, Ling, 2017. "Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics," Applied Energy, Elsevier, vol. 187(C), pages 10-26.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:10-26
    DOI: 10.1016/j.apenergy.2016.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916316324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bianchi, Giuseppe & Cipollone, Roberto, 2015. "Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors," Applied Energy, Elsevier, vol. 142(C), pages 95-107.
    2. Olszewski, Pawel, 2016. "Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps," Applied Energy, Elsevier, vol. 178(C), pages 527-539.
    3. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    4. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2021. "Improving Reliability and Energy Efficiency of Three Parallel Pumps by Selecting Trade-Off Operating Points," Mathematics, MDPI, vol. 9(11), pages 1-19, June.
    2. Xuetao Wang & Qianchuan Zhao & Yifan Wang, 2020. "A Distributed Optimization Method for Energy Saving of Parallel-Connected Pumps in HVAC Systems," Energies, MDPI, vol. 13(15), pages 1-24, July.
    3. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    4. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Olszewski, Pawel & Arafeh, Jamal, 2018. "Parametric analysis of pumping station with parallel-configured centrifugal pumps towards self-learning applications," Applied Energy, Elsevier, vol. 231(C), pages 1146-1158.
    6. Vittorini, Diego & Cipollone, Roberto, 2016. "Energy saving potential in existing industrial compressors," Energy, Elsevier, vol. 102(C), pages 502-515.
    7. Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
    8. Johnson, Hilary A. & Simon, Kevin P. & Slocum, Alexander H., 2021. "Data analytics and pump control in a wastewater treatment plant," Applied Energy, Elsevier, vol. 299(C).
    9. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    10. Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
    11. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).
    12. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, vol. 11(11), pages 1-17, October.
    14. Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
    15. Gan, Xingcheng & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Yin, Tingyun, 2022. "Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump," Energy, Elsevier, vol. 240(C).
    16. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Michał Napierała, 2022. "A Study on Improving Economy Efficiency of Pumping Stations Based on Tariff Changes," Energies, MDPI, vol. 15(3), pages 1-17, January.
    18. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    19. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
    20. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:10-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.