IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp551-560.html
   My bibliography  Save this article

Using proxies to calculate the carbon impact of investment into electricity network assets

Author

Listed:
  • Daniels, Laura
  • Coker, Phil
  • Gunn, Alice
  • Potter, Ben

Abstract

Replacement and upgrading of assets in the electricity network requires financial investment for the distribution and transmission utilities. The replacement and upgrading of network assets also represents an emissions impact due to the carbon embodied in the materials used to manufacture network assets. This paper uses investment and asset data for the GB system for 2015–2023 to assess the suitability of using a proxy with peak demand data and network investment data to calculate the carbon impacts of network investments. The proxies are calculated on a regional basis and applied to calculate the embodied carbon associated with current network assets by DNO region. The proxies are also applied to peak demand data across the 2015–2023 period to estimate the expected levels of embodied carbon that will be associated with network investment during this period. The suitability of these proxies in different contexts are then discussed, along with initial scenario analysis to calculate the impact of avoiding or deferring network investments through distributed generation projects. The proxies were found to be effective in estimating the total embodied carbon of electricity system investment in order to compare investment strategies in different regions of the GB network.

Suggested Citation

  • Daniels, Laura & Coker, Phil & Gunn, Alice & Potter, Ben, 2016. "Using proxies to calculate the carbon impact of investment into electricity network assets," Applied Energy, Elsevier, vol. 162(C), pages 551-560.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:551-560
    DOI: 10.1016/j.apenergy.2015.10.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915013471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harrison, Gareth P. & Maclean, Edward (Ned). J. & Karamanlis, Serafeim & Ochoa, Luis F., 2010. "Life cycle assessment of the transmission network in Great Britain," Energy Policy, Elsevier, vol. 38(7), pages 3622-3631, July.
    2. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    3. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    4. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    5. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    6. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniels, Laura & Coker, Phil & Potter, Ben, 2016. "Embodied carbon dioxide of network assets in a decarbonised electricity grid," Applied Energy, Elsevier, vol. 180(C), pages 142-154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniels, Laura & Coker, Phil & Potter, Ben, 2016. "Embodied carbon dioxide of network assets in a decarbonised electricity grid," Applied Energy, Elsevier, vol. 180(C), pages 142-154.
    2. Sardi, Junainah & Mithulananthan, N. & Hung, Duong Quoc, 2017. "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, Elsevier, vol. 206(C), pages 159-171.
    3. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    4. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    5. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    6. Arvesen, Anders & Hauan, Ingrid Bjerke & Bolsøy, Bernhard Mikal & Hertwich, Edgar G., 2015. "Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway," Applied Energy, Elsevier, vol. 157(C), pages 144-151.
    7. Sardi, Junainah & Mithulananthan, N. & Gallagher, M. & Hung, Duong Quoc, 2017. "Multiple community energy storage planning in distribution networks using a cost-benefit analysis," Applied Energy, Elsevier, vol. 190(C), pages 453-463.
    8. Karatepe, Engin & Ugranlı, Faruk & Hiyama, Takashi, 2015. "Comparison of single- and multiple-distributed generation concepts in terms of power loss, voltage profile, and line flows under uncertain scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 317-327.
    9. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Yaghoobi, Jalil & Islam, Monirul & Mithulananthan, Nadarajah, 2018. "Analytical approach to assess the loadability of unbalanced distribution grid with rooftop PV units," Applied Energy, Elsevier, vol. 211(C), pages 358-367.
    11. Orfanos, Neoptolemos & Mitzelos, Dimitris & Sagani, Angeliki & Dedoussis, Vassilis, 2019. "Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece," Renewable Energy, Elsevier, vol. 139(C), pages 1447-1462.
    12. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    13. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    16. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    17. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Houssainy, Sammy & Janbozorgi, Mohammad & Ip, Peggy & Kavehpour, Pirouz, 2018. "Thermodynamic analysis of a high temperature hybrid compressed air energy storage (HTH-CAES) system," Renewable Energy, Elsevier, vol. 115(C), pages 1043-1054.
    19. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    20. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:551-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.