IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp354-362.html
   My bibliography  Save this article

Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor

Author

Listed:
  • Ma, Shuangchen
  • Chen, Gongda
  • Zhu, Sijie
  • Han, Tingting
  • Yu, Weijing

Abstract

The mass transfer of CO2 capture using ammonia solution in the bubbling reactor was studied; according to double film theory, the mass transfer coefficient models and interface area model were built. Through our experiments, the overall volumetric mass transfer coefficients were obtained, while the interface areas in unit volume were estimated. The volumetric mass transfer coefficients of ammonia escaping during the experiment were 1.39×10−5–4.34×10−5mol/(m3sPa), and the volumetric mass transfer coefficients of CO2 absorption were 2.86×10−5–17.9×10−5mol/(m3sPa). The estimated interface area of unit volume in the bubbling reactor ranged from 75.19 to 256.41m2/m3, making the bubbling reactor a viable choice to obtain higher mass transfer performance than the packed tower or spraying tower.

Suggested Citation

  • Ma, Shuangchen & Chen, Gongda & Zhu, Sijie & Han, Tingting & Yu, Weijing, 2016. "Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor," Applied Energy, Elsevier, vol. 162(C), pages 354-362.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:354-362
    DOI: 10.1016/j.apenergy.2015.10.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915013161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    2. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    3. Olsson, Alexander & Campana, Pietro Elia & Lind, Mårten & Yan, Jinyue, 2014. "Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands," Applied Energy, Elsevier, vol. 136(C), pages 1145-1154.
    4. Zhao, Bingtao & Su, Yaxin & Tao, Wenwen, 2014. "Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction," Applied Energy, Elsevier, vol. 136(C), pages 132-142.
    5. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    6. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2012. "Influence of droplet mutual interaction on carbon dioxide capture process in sprays," Applied Energy, Elsevier, vol. 92(C), pages 185-193.
    7. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zevenhoven, Ron & Legendre, Daniel & Said, Arshe & Järvinen, Mika, 2019. "Carbon dioxide dissolution and ammonia losses in bubble columns for precipitated calcium carbonate (PCC) production," Energy, Elsevier, vol. 175(C), pages 1121-1129.
    2. Fengming Chu & Xi Liu & Qianhong Gao & Longchun Zhong & Guozhen Xiao & Qianlin Wang, 2023. "Selective Mechanisms of WO 3 Catalyzing CO 2 Desorption and Inhibiting NH 3 Escape," Sustainability, MDPI, vol. 15(17), pages 1-9, August.
    3. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    5. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    6. Wu, Xiao M. & Qin, Zhen & Yu, Yun S. & Zhang, Zao X., 2018. "Experimental and numerical study on CO2 absorption mass transfer enhancement for a diameter-varying spray tower," Applied Energy, Elsevier, vol. 225(C), pages 367-379.
    7. Rashidi, Hamed & Rasouli, Parvaneh & Azimi, Hossein, 2022. "A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study," Energy, Elsevier, vol. 244(PA).
    8. Yifang Liu & Fengming Chu & Lijun Yang & Xiaoze Du & Yongping Yang, 2018. "CO2 absorption characteristics in a random packed column with various geometric structures and working conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 120-132, February.
    9. Song, Chunfeng & Xie, Meilian & Qiu, Yiting & Liu, Qingling & Sun, Luchang & Wang, Kailiang & Kansha, Yasuki, 2019. "Integration of CO2 absorption with biological transformation via using rich ammonia solution as a nutrient source for microalgae cultivation," Energy, Elsevier, vol. 179(C), pages 618-627.
    10. Chu, Fengming & Liu, Yifang & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Ammonia escape mass transfer and heat transfer characteristics of CO2 absorption in packed absorbing column," Applied Energy, Elsevier, vol. 205(C), pages 1596-1604.
    11. Cheng, Xiao & Chen, Rong & Zhu, Xun & Liao, Qiang & An, Liang & Ye, Dingding & He, Xuefeng & Li, Shuzhe & Li, Lin, 2017. "An optofluidic planar microreactor for photocatalytic reduction of CO2 in alkaline environment," Energy, Elsevier, vol. 120(C), pages 276-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    2. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    3. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    4. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    5. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    6. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    7. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    8. Li, Bao-Hong & Zhang, Nan & Smith, Robin, 2016. "Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution," Applied Energy, Elsevier, vol. 161(C), pages 707-717.
    9. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
    10. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    11. Yu, Cheng-Hsiu & Chen, Ming-Tsz & Chen, Hao & Tan, Chung-Sung, 2016. "Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture," Applied Energy, Elsevier, vol. 175(C), pages 269-276.
    12. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    13. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    14. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    15. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    16. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    18. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    19. Cao, Yang & He, Boshu & Ding, Guangchao & Su, Liangbin & Duan, Zhipeng, 2017. "Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes," Energy, Elsevier, vol. 140(P1), pages 47-57.
    20. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Han, Yixiao & Liang, Ying, 2018. "Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion," Applied Energy, Elsevier, vol. 212(C), pages 465-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:354-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.