IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v156y2015icp715-726.html
   My bibliography  Save this article

A novel small dynamic solar thermal desalination plant with a fluid piston converter

Author

Listed:
  • Mahkamov, Khamid
  • Orda, Eugene
  • Belgasim, Basim
  • Makhkamova, Irina

Abstract

An innovative small dynamic water desalination plant was developed and tested under laboratory conditions. The system is a combination of a heat pipe evacuated tube solar collector, conventional condenser and novel fluid piston converter. Saline water is boiled and turned into vapour in the manifold of the solar collector. A small fraction of the solar energy supplied to the plant is used to drive the fluid piston converter. Oscillations of the fluid piston periodically change the volume and pressure in the plant. For the duration of approximately half of the periodic cycle the pressure in the plant drops below the atmospheric level causing flash boiling of saline water in the manifold of the solar collector. Generated vapour is turned into fresh water in the condenser which is surrounded by a cooling jacket with saline water. The flash boiling effect improves the fresh water production capacity of the plant. Additionally, the fluid piston converter drives a pump which provides lifting of saline water from a well and pumps this through the cooling jacket of the condenser to a saline water storage tank. This tank replenishes saline water in the manifold of the solar collector. Experimental investigations demonstrated the saline water self-circulation capability of the plant and increase in the fresh water production compared to the static mode of operation. Experimental data was also used to calibrate the mathematical model of the plant. Comparison of theoretical and experimental information demonstrates that the model accurately predicts the performance of the plant. The proposed novel system with greater fresh water production capacity has a simple design and is easy to manufacture using low cost materials and therefore can be mass deployed for small scale saline water pumping and desalination across different regions with the relatively high solar radiation and shortage in the drinking water supply.

Suggested Citation

  • Mahkamov, Khamid & Orda, Eugene & Belgasim, Basim & Makhkamova, Irina, 2015. "A novel small dynamic solar thermal desalination plant with a fluid piston converter," Applied Energy, Elsevier, vol. 156(C), pages 715-726.
  • Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:715-726
    DOI: 10.1016/j.apenergy.2015.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915008454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Ravinder & Umanand, L., 2009. "Modeling of a pressure modulated desalination system using bond graph methodology," Applied Energy, Elsevier, vol. 86(9), pages 1654-1666, September.
    2. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    3. Al-Karaghouli, A. A. & Alnaser, W. E., 2004. "Experimental comparative study of the performances of single and double basin solar-stills," Applied Energy, Elsevier, vol. 77(3), pages 317-325, March.
    4. Gaur, M.K. & Tiwari, G.N., 2010. "Optimization of number of collectors for integrated PV/T hybrid active solar still," Applied Energy, Elsevier, vol. 87(5), pages 1763-1772, May.
    5. Wu, Jun W. & Biggs, Mark J. & Pendleton, Philip & Badalyan, Alexander & Hu, Eric J., 2012. "Experimental implementation and validation of thermodynamic cycles of adsorption-based desalination," Applied Energy, Elsevier, vol. 98(C), pages 190-197.
    6. Shatat, Mahmoud. I.M. & Mahkamov, K., 2010. "Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling," Renewable Energy, Elsevier, vol. 35(1), pages 52-61.
    7. Chen, Yih-Hang & Li, Yu-Wei & Chang, Hsuan, 2012. "Optimal design and control of solar driven air gap membrane distillation desalination systems," Applied Energy, Elsevier, vol. 100(C), pages 193-204.
    8. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    9. Al-Karaghouli, A. A. & Alnaser, W. E., 2004. "Performances of single and double basin solar-stills," Applied Energy, Elsevier, vol. 78(3), pages 347-354, July.
    10. Murase, Kazuo & Yamagishi, Yusuke & Iwashita, Yusuke & Sugino, Keita, 2008. "Development of a tube-type solar still equipped with heat accumulation for irrigation," Energy, Elsevier, vol. 33(11), pages 1711-1718.
    11. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    12. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2011. "Desalination using solar energy: Towards sustainability," Energy, Elsevier, vol. 36(1), pages 78-85.
    13. Kabeel, A.E., 2009. "Performance of solar still with a concave wick evaporation surface," Energy, Elsevier, vol. 34(10), pages 1504-1509.
    14. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belgasim, Basim & Aldali, Yasser & Abdunnabi, Mohammad J.R. & Hashem, Gamal & Hossin, Khaled, 2018. "The potential of concentrating solar power (CSP) for electricity generation in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1-15.
    2. Chouder, Ryma & Benabdesselam, Azzedine & Stouffs, Pascal, 2023. "Modeling results of a new high performance free liquid piston engine," Energy, Elsevier, vol. 263(PD).
    3. Li, Shuang-Fei & Liu, Zhen-Hua & Shao, Zhi-Xiong & Xiao, Hong-shen & Xia, Ning, 2018. "Performance study on a passive solar seawater desalination system using multi-effect heat recovery," Applied Energy, Elsevier, vol. 213(C), pages 343-352.
    4. Ngangué, Max Ndamé & Stouffs, Pascal, 2020. "Dynamic simulation of an original Joule cycle liquid pistons hot air Ericsson engine," Energy, Elsevier, vol. 190(C).
    5. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    2. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    3. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    4. El-Sebaii, A.A. & El-Bialy, E., 2015. "Advanced designs of solar desalination systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1198-1212.
    5. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    7. Li, Guo-Pei & Zhang, Li-Zhi, 2016. "Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 177(C), pages 393-408.
    8. Xie, Guo & Sun, Licheng & Mo, Zhengyu & Liu, Hongtao & Du, Min, 2016. "Conceptual design and experimental investigation involving a modular desalination system composed of arrayed tubular solar stills," Applied Energy, Elsevier, vol. 179(C), pages 972-984.
    9. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    10. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    11. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    12. Kianifar, Ali & Zeinali Heris, Saeed & Mahian, Omid, 2012. "Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases," Energy, Elsevier, vol. 38(1), pages 31-36.
    13. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    14. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    15. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    16. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    18. Chen, Yih-Hang & Li, Yu-Wei & Chang, Hsuan, 2012. "Optimal design and control of solar driven air gap membrane distillation desalination systems," Applied Energy, Elsevier, vol. 100(C), pages 193-204.
    19. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang & Maganti, Anand, 2012. "Low temperature desalination using solar collectors augmented by thermal energy storage," Applied Energy, Elsevier, vol. 91(1), pages 466-474.
    20. Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:715-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.