IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp402-406.html
   My bibliography  Save this article

P-graph approach to optimal operational adjustment in polygeneration plants under conditions of process inoperability

Author

Listed:
  • Tan, Raymond R.
  • Cayamanda, Christina D.
  • Aviso, Kathleen B.

Abstract

Polygeneration plants are inherently more efficient, and generate reduced emissions, in comparison to equivalent stand-alone production systems. These benefits arise from process integration opportunities within the plant. However, such integration also creates interdependencies among process units, which may lead to cascading failures in the event of partial or complete inoperability of key system components. In such cases, the major operational concern is to maximize operating profits (or minimize losses relative to the baseline state) by reallocating process streams; process units may be run at partial load or shut down completely, as needed. In previous work, it has been proposed to determine the optimal operational adjustments using mixed-integer linear programming (MILP). In this note, we propose an alternative methodology for determining the optimal adjustments based on P-graphs, and demonstrate it using a case study.

Suggested Citation

  • Tan, Raymond R. & Cayamanda, Christina D. & Aviso, Kathleen B., 2014. "P-graph approach to optimal operational adjustment in polygeneration plants under conditions of process inoperability," Applied Energy, Elsevier, vol. 135(C), pages 402-406.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:402-406
    DOI: 10.1016/j.apenergy.2014.08.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400912X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    2. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    3. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    4. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    5. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    6. Zhang, Jianyun & Liu, Pei & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system," Applied Energy, Elsevier, vol. 114(C), pages 146-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aviso, Kathleen B. & Marfori, Isidro Antonio V. & Tan, Raymond R. & Ubando, Aristotle T., 2020. "Optimizing abnormal operations of off-grid community utility systems with fuzzy P-graph," Energy, Elsevier, vol. 202(C).
    2. Aviso, Kathleen B. & Tan, Raymond R., 2018. "Fuzzy P-graph for optimal synthesis of cogeneration and trigeneration systems," Energy, Elsevier, vol. 154(C), pages 258-268.
    3. András Éles & István Heckl & Heriberto Cabezas, 2021. "Modeling technique in the P-Graph framework for operating units with flexible input ratios," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 463-489, June.
    4. Sy, Charlle L. & Aviso, Kathleen B. & Ubando, Aristotle T. & Tan, Raymond R., 2016. "Target-oriented robust optimization of polygeneration systems under uncertainty," Energy, Elsevier, vol. 116(P2), pages 1334-1347.
    5. Tan, R.R. & Aviso, K.B. & Cayamanda, C.D. & Chiu, A.S.F. & Promentilla, M.A.B. & Ubando, A.T. & Yu, K.D.S., 2016. "A fuzzy linear programming enterprise input–output model for optimal crisis operations in industrial complexes," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 410-418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aviso, Kathleen B. & Tan, Raymond R., 2018. "Fuzzy P-graph for optimal synthesis of cogeneration and trigeneration systems," Energy, Elsevier, vol. 154(C), pages 258-268.
    2. Sy, Charlle L. & Aviso, Kathleen B. & Ubando, Aristotle T. & Tan, Raymond R., 2016. "Target-oriented robust optimization of polygeneration systems under uncertainty," Energy, Elsevier, vol. 116(P2), pages 1334-1347.
    3. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    4. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    5. Lozano, Miguel A. & Serra, Luis M. & Pina, Eduardo A., 2022. "Optimal design of trigeneration systems for buildings considering cooperative game theory for allocating production cost to energy services," Energy, Elsevier, vol. 261(PB).
    6. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    7. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    8. Andrii Radchenko & Mykola Radchenko & Hanna Koshlak & Roman Radchenko & Serhiy Forduy, 2022. "Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data," Energies, MDPI, vol. 15(22), pages 1-18, November.
    9. Monica Carvalho & Dean L. Millar, 2012. "Concept Development of Optimal Mine Site Energy Supply," Energies, MDPI, vol. 5(11), pages 1-20, November.
    10. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    11. Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
    12. Miao Li & Hailin Mu & Huanan Li, 2013. "Analysis and Assessments of Combined Cooling, Heating and Power Systems in Various Operation Modes for a Building in China, Dalian," Energies, MDPI, vol. 6(5), pages 1-22, May.
    13. Aristotle T. Ubando & Isidro Antonio V. Marfori & Kathleen B. Aviso & Raymond R. Tan, 2019. "Optimal Operational Adjustment of a Community-Based Off-Grid Polygeneration Plant using a Fuzzy Mixed Integer Linear Programming Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    14. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    15. Pina, Eduardo A. & Lozano, Miguel A. & Ramos, José C. & Serra, Luis M., 2020. "Tackling thermal integration in the synthesis of polygeneration systems for buildings," Applied Energy, Elsevier, vol. 269(C).
    16. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2017. "Optimal operation and marginal costs in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 135(C), pages 788-798.
    17. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    18. Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    19. Kim, Dong Kyu & Lee, Ji Sung & Kim, Jinwoo & Kim, Mo Se & Kim, Min Soo, 2017. "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C," Applied Energy, Elsevier, vol. 189(C), pages 55-65.
    20. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:402-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.