IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v132y2014icp155-162.html
   My bibliography  Save this article

Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis

Author

Listed:
  • Seifert, A.H.
  • Rittmann, S.
  • Herwig, C.

Abstract

The biological conversion of H2 and CO2 into CH4, using methanogenic archaea is an interesting technology for CO2 conversion, energy storage and biogas upgrading. For an industrial application of this process however, the optimization of the volumetric productivity and the product quality is an important issue. Since the reactants in this fermentation process are, unlike in most microbial fermentations, solely gasses, the gas liquid mass transfer is supposed to play an important role on the way to a higher volumetric productivity.

Suggested Citation

  • Seifert, A.H. & Rittmann, S. & Herwig, C., 2014. "Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis," Applied Energy, Elsevier, vol. 132(C), pages 155-162.
  • Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:155-162
    DOI: 10.1016/j.apenergy.2014.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rudolf K. Thauer & Seigo Shima, 2006. "Methane and microbes," Nature, Nature, vol. 440(7086), pages 878-879, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savvas, Savvas & Donnelly, Joanne & Patterson, Tim & Chong, Zyh S. & Esteves, Sandra R., 2017. "Biological methanation of CO2 in a novel biofilm plug-flow reactor: A high rate and low parasitic energy process," Applied Energy, Elsevier, vol. 202(C), pages 238-247.
    2. Andreas Lemmer & Timo Ullrich, 2018. "Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors," Energies, MDPI, vol. 11(6), pages 1-11, May.
    3. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    4. Jensen, M.B. & Ottosen, L.D.M. & Kofoed, M.V.W., 2021. "H2 gas-liquid mass transfer: A key element in biological Power-to-Gas methanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Burkhardt, Marko & Jordan, Isabel & Heinrich, Sabrina & Behrens, Johannes & Ziesche, André & Busch, Günter, 2019. "Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 818-826.
    6. Inkeri, Eero & Tynjälä, Tero & Laari, Arto & Hyppänen, Timo, 2018. "Dynamic one-dimensional model for biological methanation in a stirred tank reactor," Applied Energy, Elsevier, vol. 209(C), pages 95-107.
    7. Griese, Martin & Hoffarth, Marc Philippe & Schneider, Jan & Schulte, Thomas, 2019. "Hardware-in-the-Loop simulation of an optimized energy management incorporating an experimental biocatalytic methanation reactor," Energy, Elsevier, vol. 181(C), pages 77-90.
    8. Hidalgo, D. & Martín-Marroquín, J.M., 2020. "Power-to-methane, coupling CO2 capture with fuel production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    10. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    11. Ruggero Bellini & Ilaria Bassani & Arianna Vizzarro & Annalisa Abdel Azim & Nicolò Santi Vasile & Candido Fabrizio Pirri & Francesca Verga & Barbara Menin, 2022. "Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO 2," Energies, MDPI, vol. 15(11), pages 1-34, June.
    12. Voelklein, M.A. & Rusmanis, Davis & Murphy, J.D., 2019. "Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion," Applied Energy, Elsevier, vol. 235(C), pages 1061-1071.
    13. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    14. Okkyoung Choi & MinJeong Kim & Youngwook Go & Moon-Gi Hong & Bomin Kim & Yonghyun Shin & Sangho Lee & Young Gook Kim & Ji Sun Joo & Byoung Seung Jeon & Byoung-In Sang, 2019. "Selective Removal of Water Generated during Hydrogenotrophic Methanation from Culture Medium Using Membrane Distillation," Energies, MDPI, vol. 12(21), pages 1-12, October.
    15. Moioli, Emanuele & Schildhauer, Tilman, 2022. "Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Rittmann, Simon K.-M.R. & Seifert, Arne H. & Bernacchi, Sébastien, 2018. "Kinetics, multivariate statistical modelling, and physiology of CO2-based biological methane production," Applied Energy, Elsevier, vol. 216(C), pages 751-760.
    17. Tuğçe Dağlıoğlu & Tuba Ceren Öğüt & Guven Ozdemir & Nuri Azbar, 2021. "Comparative analysis of the effect of cell immobilization on the hydrogenothrophic biomethanation of CO2," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 493-505, June.
    18. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Keywords

      Archaea; Biological methanogenesis; Continuous culture; Gas/liquid mass transfer; CO2; H2; CH4; quantification;
      All these keywords.

      JEL classification:

      • H2 - Public Economics - - Taxation, Subsidies, and Revenue

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:132:y:2014:i:c:p:155-162. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.