IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v116y2014icp355-375.html
   My bibliography  Save this article

Vacuum insulation panel products: A state-of-the-art review and future research pathways

Author

Listed:
  • Kalnæs, Simen Edsjø
  • Jelle, Bjørn Petter

Abstract

Vacuum insulation panels (VIP) are regarded as one of the most upcoming high performance thermal insulation solutions. At delivery, thermal conductivity for a VIP can be as low as 0.002–0.004W/(mK) depending on the core material. VIPs enable highly insulated solutions, and a measure to reduce the energy usage in both hot-water applications, cold applications and for the construction industry in general. This study gives a state-of-the-art review of VIP products found available on the market today, and explore the future research opportunities for these products.

Suggested Citation

  • Kalnæs, Simen Edsjø & Jelle, Bjørn Petter, 2014. "Vacuum insulation panel products: A state-of-the-art review and future research pathways," Applied Energy, Elsevier, vol. 116(C), pages 355-375.
  • Handle: RePEc:eee:appene:v:116:y:2014:i:c:p:355-375
    DOI: 10.1016/j.apenergy.2013.11.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913009264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.11.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alam, M. & Singh, H. & Limbachiya, M.C., 2011. "Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions," Applied Energy, Elsevier, vol. 88(11), pages 3592-3602.
    2. Toshi H. Arimura, Shanjun Li, Richard G. Newell, and Karen Palmer, 2012. "Cost-Effectiveness of Electricity Energy Efficiency Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Nussbaumer, T. & Wakili, K. Ghazi & Tanner, Ch., 2006. "Experimental and numerical investigation of the thermal performance of a protected vacuum-insulation system applied to a concrete wall," Applied Energy, Elsevier, vol. 83(8), pages 841-855, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    2. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    3. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    4. Chen, Zhou & Chen, Zhaofeng & Yang, Zhaogang & Hu, Jiaming & Yang, Yong & Chang, Lingqian & Lee, L. James & Xu, Tengzhou, 2015. "Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material," Energy, Elsevier, vol. 93(P1), pages 945-954.
    5. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    6. Liang Guo & Wenbin Tong & Yexin Xu & Hong Ye, 2018. "Composites with Excellent Insulation and High Adaptability for Lightweight Envelopes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    7. Moretti, Elisa & Belloni, Elisa & Agosti, Fabrizio, 2016. "Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization," Applied Energy, Elsevier, vol. 169(C), pages 421-432.
    8. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Li, Xiangyu & Chen, Huisu & Li, Huiqiang & Liu, Lin & Lu, Zeyu & Zhang, Tao & Duan, Wen Hui, 2015. "Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage," Applied Energy, Elsevier, vol. 159(C), pages 601-609.
    10. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim, 2016. "Energy performance and economic viability of nano aerogel glazing and nano vacuum insulation panel in multi-story office building," Energy, Elsevier, vol. 113(C), pages 949-956.
    11. Biswas, Kaushik & Desjarlais, Andre & Smith, Douglas & Letts, John & Yao, Jennifer & Jiang, Timothy, 2018. "Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels," Applied Energy, Elsevier, vol. 228(C), pages 1159-1172.
    12. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    13. Tyler R. Stevens & Nathan B. Crane & Rydge B. Mulford, 2023. "Topology Morphing Insulation: A Review of Technologies and Energy Performance in Dynamic Building Insulation," Energies, MDPI, vol. 16(19), pages 1-38, October.
    14. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
    15. Bjørn Petter Jelle, 2015. "Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways," Energies, MDPI, vol. 9(1), pages 1-30, December.
    16. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Alam, M. & Singh, H. & Suresh, S. & Redpath, D.A.G., 2017. "Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings," Applied Energy, Elsevier, vol. 188(C), pages 1-8.
    18. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    19. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Taesub Lim & Jaewang Seok & Daeung Danny Kim, 2017. "A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building," Energies, MDPI, vol. 10(12), pages 1-12, December.
    21. Soo Y. Kim & Dong H. Kang & Korakot Charoensri & Jae R. Ryu & Yang J. Shin & Hyun J. Park, 2023. "Comparative Life Cycle Assessment of Reusable and Disposable Distribution Packaging for Fresh Food," Sustainability, MDPI, vol. 15(23), pages 1-17, November.
    22. Ricciardi, P. & Belloni, E. & Cotana, F., 2014. "Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment," Applied Energy, Elsevier, vol. 134(C), pages 150-162.
    23. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.
    24. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.
    25. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alam, M. & Singh, H. & Suresh, S. & Redpath, D.A.G., 2017. "Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings," Applied Energy, Elsevier, vol. 188(C), pages 1-8.
    2. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    3. Nemanič, V. & Zajec, B. & Žumer, M. & Figar, N. & Kavšek, M. & Mihelič, I., 2014. "Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation," Applied Energy, Elsevier, vol. 114(C), pages 320-326.
    4. Kim, Jongmin & Jang, Choonghyo & Song, Tae-Ho, 2012. "Combined heat transfer in multi-layered radiation shields for vacuum insulation panels: Theoretical/numerical analyses and experiment," Applied Energy, Elsevier, vol. 94(C), pages 295-302.
    5. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim, 2016. "Energy performance and economic viability of nano aerogel glazing and nano vacuum insulation panel in multi-story office building," Energy, Elsevier, vol. 113(C), pages 949-956.
    6. Biswas, Kaushik & Desjarlais, Andre & Smith, Douglas & Letts, John & Yao, Jennifer & Jiang, Timothy, 2018. "Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels," Applied Energy, Elsevier, vol. 228(C), pages 1159-1172.
    7. Liang Guo & Wenbin Tong & Yexin Xu & Hong Ye, 2018. "Composites with Excellent Insulation and High Adaptability for Lightweight Envelopes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    8. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.
    9. Chen, Zhou & Chen, Zhaofeng & Yang, Zhaogang & Hu, Jiaming & Yang, Yong & Chang, Lingqian & Lee, L. James & Xu, Tengzhou, 2015. "Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material," Energy, Elsevier, vol. 93(P1), pages 945-954.
    10. Horowitz, Marvin J. & Bertoldi, Paolo, 2015. "A harmonized calculation model for transforming EU bottom-up energy efficiency indicators into empirical estimates of policy impacts," Energy Economics, Elsevier, vol. 51(C), pages 135-148.
    11. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    12. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    13. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    14. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk, 2018. "Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime," Applied Energy, Elsevier, vol. 217(C), pages 390-408.
    15. Jenya Kahn-Lang, 2016. "The Effects of Electric Utility Decoupling on Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    16. Ascione, Fabrizio & Bianco, Nicola & Rossi, Filippo de’ & Turni, Gianluca & Vanoli, Giuseppe Peter, 2012. "Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates," Applied Energy, Elsevier, vol. 97(C), pages 405-418.
    17. Datta, Souvik, 2019. "Decoupling and demand-side management: Evidence from the US electric industry," Energy Policy, Elsevier, vol. 132(C), pages 175-184.
    18. Papineau, Maya, 2017. "Setting the standard? A framework for evaluating the cost-effectiveness of building energy standards," Energy Economics, Elsevier, vol. 64(C), pages 63-76.
    19. Paola Iodice & Nicola Massarotti & Alessandro Mauro, 2016. "Effects of Inhomogeneities on Heat and Mass Transport Phenomena in Thermal Bridges," Energies, MDPI, vol. 9(3), pages 1-21, February.
    20. M. M. Sarafraz & Alireza Dareh Baghi & Mohammad Reza Safaei & Arturo S. Leon & R. Ghomashchi & Marjan Goodarzi & Cheng-Xian Lin, 2019. "Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings," Energies, MDPI, vol. 12(22), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:116:y:2014:i:c:p:355-375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.