IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v115y2014icp140-150.html
   My bibliography  Save this article

Photovoltaic optimizer boost converters: Temperature influence and electro-thermal design

Author

Listed:
  • Graditi, G.
  • Adinolfi, G.
  • Tina, G.M.

Abstract

Photovoltaic (PV) systems can operate in presence of not uniform working conditions caused by continuously changing temperature and irradiance values and mismatching and shadowing phenomena. The more the PV system works in these conditions, the more its energy performances are negatively affected. Distributed Maximum Power Point Tracking (DMPPT) converters are now increasingly used to overcome this problem and to improve PV applications efficiency. A DMPPT system consists in a DC–DC converters equipped with a suitable controller dedicated to the Maximum Power Point Tracking (MPPT) of a single PV module. It is arranged either inside the junction-box or in a separate box close to the PV generator. Many power optimizers are now commercially available. In spite of different adopted DC–DC converter topologies, the shared interests of DMPPT systems designers are the high efficiency and reliability values. It is worth noting that to obtain so high performances converters, electronic components have to be carefully selected between the whole commercial availability and appropriately matched together. In this scenario, an electro-thermal design methodology is proposed and a reliability study by means of the Military Handbook 217F is carried out.

Suggested Citation

  • Graditi, G. & Adinolfi, G. & Tina, G.M., 2014. "Photovoltaic optimizer boost converters: Temperature influence and electro-thermal design," Applied Energy, Elsevier, vol. 115(C), pages 140-150.
  • Handle: RePEc:eee:appene:v:115:y:2014:i:c:p:140-150
    DOI: 10.1016/j.apenergy.2013.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913008519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Feel-soon & Park, Sung-Jun & Cho, Su Eog & Kim, Jang-Mok, 2005. "Photovoltaic power interface circuit incorporated with a buck-boost converter and a full-bridge inverter," Applied Energy, Elsevier, vol. 82(3), pages 266-283, November.
    2. Tina, Giuseppe Marco & Gagliano, Salvina & Graditi, Giorgio & Merola, Angelo, 2012. "Experimental validation of a probabilistic model for estimating the double axis PV tracking energy production," Applied Energy, Elsevier, vol. 97(C), pages 990-998.
    3. Kalantar, M. & Mousavi G., S.M., 2010. "Posicast control within feedback structure for a DC-DC single ended primary inductor converter in renewable energy applications," Applied Energy, Elsevier, vol. 87(10), pages 3110-3114, October.
    4. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sungmin Park & Weiqiang Chen & Ali M. Bazzi & Sung-Yeul Park, 2017. "A Time-Efficient Approach for Modelling and Simulation of Aggregated Multiple Photovoltaic Microinverters," Energies, MDPI, vol. 10(4), pages 1-19, March.
    2. Cho, Younghoon, 2017. "Dual-buck residential photovoltaic inverter with a high-accuracy repetitive current controller," Renewable Energy, Elsevier, vol. 101(C), pages 168-181.
    3. Adrian Plesca & Lucian Mihet-Popa, 2020. "Thermal Analysis of Power Rectifiers in Steady-State Conditions," Energies, MDPI, vol. 13(8), pages 1-19, April.
    4. Chatterjee, Aditi & Mohanty, Kanungobarada & Kommukuri, Vinaya Sagar & Thakre, Kishor, 2017. "Design and experimental investigation of digital model predictive current controller for single phase grid integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 108(C), pages 438-448.
    5. Senthilkumar Subramanian & Chandramohan Sankaralingam & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan & Kannadasan Raju & Lucian Mihet-Popa, 2021. "An Evaluation on Wind Energy Potential Using Multi-Objective Optimization Based Non-Dominated Sorting Genetic Algorithm III," Sustainability, MDPI, vol. 13(1), pages 1-29, January.
    6. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    7. Canras Batunlu & Mohamad Alrweq & Alhussein Albarbar, 2016. "Effects of Power Tracking Algorithms on Lifetime of Power Electronic Devices Used in Solar Systems," Energies, MDPI, vol. 9(11), pages 1-23, October.
    8. Kyritsis, A. & Roman, E. & Kalogirou, S.A. & Nikoletatos, J. & Agathokleous, R. & Mathas, E. & Tselepis, S., 2019. "Households with Fibre Reinforced Composite BIPV modules in Southern Europe under Net Metering Scheme," Renewable Energy, Elsevier, vol. 137(C), pages 167-176.
    9. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    10. Yun Zhang & Jilong Shi & Chuanzhi Fu & Wei Zhang & Ping Wang & Jing Li & Mark Sumner, 2018. "An Enhanced Hybrid Switching-Frequency Modulation Strategy for Fuel Cell Vehicle Three-Level DC-DC Converters with Quasi-Z Source," Energies, MDPI, vol. 11(5), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sivakumar, S. & Sathik, M. Jagabar & Manoj, P.S. & Sundararajan, G., 2016. "An assessment on performance of DC–DC converters for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1475-1485.
    2. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    3. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    4. Zhifu, Wang & Yupu, Wang & Yinan, Rong, 2017. "Design of closed-loop control system for a bidirectional full bridge DC/DC converter," Applied Energy, Elsevier, vol. 194(C), pages 617-625.
    5. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    6. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    7. Houssamo, Issam & Locment, Fabrice & Sechilariu, Manuela, 2010. "Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms," Renewable Energy, Elsevier, vol. 35(10), pages 2381-2387.
    8. Chao, Kuei-Hsiang & Lin, Yu-Sheng & Lai, Uei-Dar, 2015. "Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays," Applied Energy, Elsevier, vol. 158(C), pages 609-618.
    9. Pal, Rudra Sankar & Mukherjee, V., 2020. "Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition," Energy, Elsevier, vol. 212(C).
    10. Federico Minelli & Diana D’Agostino & Maria Migliozzi & Francesco Minichiello & Pierpaolo D’Agostino, 2023. "PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping," Energies, MDPI, vol. 16(15), pages 1-35, August.
    11. Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G., 2010. "Analysis of active islanding detection methods for grid-connected microinverters for renewable energy processing," Applied Energy, Elsevier, vol. 87(11), pages 3591-3605, November.
    12. G, Dileep. & Singh, S.N., 2017. "Selection of non-isolated DC-DC converters for solar photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1230-1247.
    13. Alexandro Ortiz & Efrain Mendez & Israel Macias & Arturo Molina, 2022. "Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame," Energies, MDPI, vol. 15(23), pages 1-24, November.
    14. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    15. Kuei-Hsiang Chao & Meng-Cheng Wu, 2016. "Global Maximum Power Point Tracking (MPPT) of a Photovoltaic Module Array Constructed through Improved Teaching-Learning-Based Optimization," Energies, MDPI, vol. 9(12), pages 1-18, November.
    16. Sánchez Reinoso, Carlos R. & Milone, Diego H. & Buitrago, Román H., 2013. "Simulation of photovoltaic centrals with dynamic shading," Applied Energy, Elsevier, vol. 103(C), pages 278-289.
    17. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    18. Marco Balato & Carlo Petrarca, 2020. "The Impact of Reconfiguration on the Energy Performance of the Distributed Maximum Power Point Tracking Approach in PV Plants," Energies, MDPI, vol. 13(6), pages 1-19, March.
    19. Ahmed Ismail M. Ali & Zuhair Muhammed Alaas & Mahmoud A. Sayed & Abdulaziz Almalaq & Anouar Farah & Mohamed A. Mohamed, 2022. "An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    20. Seungho Choi & Sangyoung Park & Junhee Hong & Jehyuk Won, 2023. "A Design and Validation of 400 W PV Emulator Using Simple Equivalent Circuit for PV Power System Test," Energies, MDPI, vol. 16(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:115:y:2014:i:c:p:140-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.