IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp657-668.html
   My bibliography  Save this article

Techno-economic analysis of corn stover fungal fermentation to ethanol

Author

Listed:
  • Meyer, Pimphan A.
  • Tews, Iva J.
  • Magnuson, Jon K.
  • Karagiosis, Sue A.
  • Jones, Susanne B.

Abstract

Researchers at the Pacific Northwest National Laboratory (PNNL) perform fungal research and development activities to support the goal of promoting renewable energy production as set by the U.S. Department of Energy (DOE). This techno-economic analysis assesses the process economics of ethanol production from lignocellulosic feedstock by fungi to identify promising opportunities, and the research needed to exploit them. Based on literature derived data, four different ethanologen strains are considered in this study: native and recombinant Saccharomyces cerevisiae, the natural pentose-fermenting yeast, Pichia stipitis and the filamentous fungus Fusarium oxysporum. In addition, filamentous fungi are applied in multi-organism and consolidated process configurations. Organism performance and technology readiness are categorized as near-term (<5years), mid-term (5–10years), and long-term (>10years) process deployment. Processes classified as near-term could reasonably be developed in this shorter time frame, as suggested by recent literature. Mid-term technology process models are based on published lab-scale experimental data. Yields near the theoretical limit are classified as long-term technology goals. Among the four ethanologen strains, recombinant S. cerevisiae provides the most attractive process economics as defined by the lowest Minimum Ethanol Selling Price (MESP). This also falls in a range of the model analysis results suggested by literature based on different feedstock and organisms. Moreover, the analysis of mid-term and long-term processes shows improved profitability, revenue and process economics when co-producing chemicals on-site is applied, resulting in 1.98$/gallon of ethanol from a mid-term process scenario. The results of the analysis suggest that the opportunity for fungal fermentation exists for lignocellulosic ethanol production.

Suggested Citation

  • Meyer, Pimphan A. & Tews, Iva J. & Magnuson, Jon K. & Karagiosis, Sue A. & Jones, Susanne B., 2013. "Techno-economic analysis of corn stover fungal fermentation to ethanol," Applied Energy, Elsevier, vol. 111(C), pages 657-668.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:657-668
    DOI: 10.1016/j.apenergy.2013.04.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amore, Antonella & Faraco, Vincenza, 2012. "Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3286-3301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei-Cheng & Sheng, Chung-Teh & Liu, Yu-Cheng & Chen, Wei-Jen & Huang, Wen-Luh & Chang, Shih-Hsien & Chang, Wei-Che, 2014. "Optimizing the efficiency of anhydrous ethanol purification via regenerable molecular sieve," Applied Energy, Elsevier, vol. 135(C), pages 483-489.
    2. Karthik Rajendran & Sreevathsava Rajoli & Mohammad J. Taherzadeh, 2016. "Techno-Economic Analysis of Integrating First and Second-Generation Ethanol Production Using Filamentous Fungi: An Industrial Case Study," Energies, MDPI, vol. 9(5), pages 1-13, May.
    3. Troiano, D. & Orsat, V. & Dumont, M.J., 2020. "Status of filamentous fungi in integrated biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Tanmay Chaturvedi & Ana I. Torres & George Stephanopoulos & Mette Hedegaard Thomsen & Jens Ejbye Schmidt, 2020. "Developing Process Designs for Biorefineries—Definitions, Categories, and Unit Operations," Energies, MDPI, vol. 13(6), pages 1-22, March.
    5. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    2. Rossana Liguori & Anna Pennacchio & Luciana Porto de Souza Vandenberghe & Addolorata De Chiaro & Leila Birolo & Carlos Ricardo Soccol & Vincenza Faraco, 2021. "Screening of Fungal Strains for Cellulolytic and Xylanolytic Activities Production and Evaluation of Brewers’ Spent Grain as Substrate for Enzyme Production by Selected Fungi," Energies, MDPI, vol. 14(15), pages 1-17, July.
    3. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Monirul Islam Miskat & Ashfaq Ahmed & Hemal Chowdhury & Tamal Chowdhury & Piyal Chowdhury & Sadiq M. Sait & Young-Kwon Park, 2020. "Assessing the Theoretical Prospects of Bioethanol Production as a Biofuel from Agricultural Residues in Bangladesh: A Review," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    5. Avelino Gonçalves, Fabiano & dos Santos, Everaldo Silvino & de Macedo, Gorete Ribeiro, 2015. "Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1287-1303.
    6. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    7. Carrillo-Nieves, Danay & Rostro Alanís, Magdalena J. & de la Cruz Quiroz, Reynaldo & Ruiz, Héctor A. & Iqbal, Hafiz M.N. & Parra-Saldívar, Roberto, 2019. "Current status and future trends of bioethanol production from agro-industrial wastes in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 63-74.
    8. Troiano, D. & Orsat, V. & Dumont, M.J., 2020. "Status of filamentous fungi in integrated biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Mendes, Fabrício Bruno & Ibraim Pires Atala, Daniel & Thoméo, João Cláudio, 2017. "Is cellulase production by solid-state fermentation economically attractive for the second generation ethanol production?," Renewable Energy, Elsevier, vol. 114(PB), pages 525-533.
    10. Sean Michael Scully & Johann Orlygsson, 2014. "Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria," Energies, MDPI, vol. 8(1), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:657-668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.