IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp898-907.html
   My bibliography  Save this article

Computational study of crevice soot entrainment in a diesel engine

Author

Listed:
  • Tan, Shin Mei
  • Ng, Hoon Kiat
  • Gan, Suyin

Abstract

In this reported work, operating parameters affecting spatial evolution of combustion soot and the associated transport processes into crevice region in a light-duty diesel engine were appraised. Numerical computation of diesel combustion was undertaken by means of linking a plug-in chemistry solver namely, CHEMKIN-CFD into ANSYS FLUENT 12, a commercial Computational Fluid Dynamics (CFD) software. The mesh domain comprised the crevice region to allow quantitative and qualitative inspections of species entrained into the crevice. Effects on the soot spatial evolution and the soot entrainment into crevice and region near the cylinder liner are studied for different injection strategies. This includes single injection with different start of injection (SOI) timings, as well as two main injection pulses with different fuel mass distribution and dwell period in between the two. Soot entrainment process is found to occur through two phases, which is after the ignition process and at the end of the expansion stroke. Most significant soot mass entrainment is found in cases with retarded fuel injection and split-main injection with large separation in between the pulses. Advancing the SOI reduces the soot concentration in the combustion chamber and correspondingly moderates the soot entrainment process. Implementing a close-coupled injection has a more significant effect in reducing soot entrainment in the late injection cases as compared to those with advanced injection. Amount of soot near the cylinder liner for all cases are between 20 and 2000 times higher than those in the crevice region, and soot entrainment via mass transport is dominant as compared to the soot formation near the crevice. For future investigation, improvement can be made to the CFD sub models to account for the thermophoretic effect on soot deposition process.

Suggested Citation

  • Tan, Shin Mei & Ng, Hoon Kiat & Gan, Suyin, 2013. "Computational study of crevice soot entrainment in a diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 898-907.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:898-907
    DOI: 10.1016/j.apenergy.2012.09.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912006708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.09.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suh, Hyun Kyu, 2011. "Investigations of multiple injection strategies for the improvement of combustion and exhaust emissions characteristics in a low compression ratio (CR) engine," Applied Energy, Elsevier, vol. 88(12), pages 5013-5019.
    2. Park, Su Han & Cha, Junepyo & Lee, Chang Sik, 2012. "Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine," Applied Energy, Elsevier, vol. 99(C), pages 334-343.
    3. Rakopoulos, C.D. & Kosmadakis, G.M. & Dimaratos, A.M. & Pariotis, E.G., 2011. "Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a CFD code," Applied Energy, Elsevier, vol. 88(1), pages 111-126, January.
    4. Gan, Suyin & Ng, Hoon Kiat & Pang, Kar Mun, 2011. "Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines," Applied Energy, Elsevier, vol. 88(3), pages 559-567, March.
    5. Ng, Jo-Han & Ng, Hoon Kiat & Gan, Suyin, 2012. "Characterisation of engine-out responses from a light-duty diesel engine fuelled with palm methyl ester (PME)," Applied Energy, Elsevier, vol. 90(1), pages 58-67.
    6. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.
    7. Mohamed Ismail, Harun & Ng, Hoon Kiat & Gan, Suyin, 2012. "Evaluation of non-premixed combustion and fuel spray models for in-cylinder diesel engine simulation," Applied Energy, Elsevier, vol. 90(1), pages 271-279.
    8. Agarwal, Deepak & Singh, Shrawan Kumar & Agarwal, Avinash Kumar, 2011. "Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine," Applied Energy, Elsevier, vol. 88(8), pages 2900-2907, August.
    9. Prasad, B.V.V.S.U. & Sharma, C.S. & Anand, T.N.C. & Ravikrishna, R.V., 2011. "High swirl-inducing piston bowls in small diesel engines for emission reduction," Applied Energy, Elsevier, vol. 88(7), pages 2355-2367, July.
    10. Wang, Xiangang & Huang, Zuohua & Zhang, Wu & Kuti, Olawole Abiola & Nishida, Keiya, 2011. "Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray," Applied Energy, Elsevier, vol. 88(5), pages 1620-1628, May.
    11. Giakoumis, Evangelos G. & Dimaratos, Athanasios M. & Rakopoulos, Constantine D., 2011. "Experimental study of combustion noise radiation during transient turbocharged diesel engine operation," Energy, Elsevier, vol. 36(8), pages 4983-4995.
    12. Ng, Hoon Kiat & Gan, Suyin & Ng, Jo-Han & Pang, Kar Mun, 2013. "Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism," Applied Energy, Elsevier, vol. 102(C), pages 1275-1287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    3. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    4. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
    5. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    6. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    7. Zhao, Junfeng & Wang, Junmin, 2013. "Control-oriented multi-phase combustion model for biodiesel fueled engines," Applied Energy, Elsevier, vol. 108(C), pages 92-99.
    8. Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
    9. Nemat Keramat Siavash & Golamhassan Najafi & Sayed Reza Hassan-Beygi & Hossain Ahmadian & Barat Ghobadian & Talal Yusaf & Mohammed Mazlan, 2021. "Time–Frequency Analysis of Diesel Engine Noise Using Biodiesel Fuel Blends," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    10. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
    11. Gnana Sagaya Raj, Antony Raj & Mallikarjuna, Jawali Maharudrappa & Ganesan, Venkitachalam, 2013. "Energy efficient piston configuration for effective air motion – A CFD study," Applied Energy, Elsevier, vol. 102(C), pages 347-354.
    12. Wu, Shaohua & Lao, Chung Ting & Akroyd, Jethro & Mosbach, Sebastian & Yang, Wenming & Kraft, Markus, 2020. "A joint moment projection method and maximum entropy approach for simulation of soot formation and oxidation in diesel engines," Applied Energy, Elsevier, vol. 258(C).
    13. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
    14. Giakoumis, Evangelos G. & Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Rakopoulos, Dimitrios C., 2013. "Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 170-190.
    15. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    16. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    17. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    18. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Chang, Yu-Cheng & Lee, Wen-Jhy & Wang, Lin-Chi & Yang, Hsi-Hsien & Cheng, Man-Ting & Lu, Jau-Huai & Tsai, Ying I. & Young, Li-Hao, 2014. "Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine," Applied Energy, Elsevier, vol. 113(C), pages 631-638.
    20. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:898-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.