IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v463y2024ics0096300323005155.html
   My bibliography  Save this article

An improved stabilized element-free Galerkin method for solving steady Stokes flow problems

Author

Listed:
  • Sun, Fengxin
  • Wang, Jufeng
  • Xu, Ying

Abstract

Combining the dimensional splitting moving least squares (DSMLS) approximation and the variational weak form, this paper developed an improved stabilized element-free Galerkin (ISEFG) method for Stokes problems. In the ISEFG method, the DSMLS approximation is adopted to construct the shape function, and the stabilization factor is established based on the solution space of velocity and pressure. The Galerkin weak form and integral coordinate transformation are taken to achieve the final discrete equations of the problems. Following the ideas of the dimensional splitting method, the DSMLS method approximates the functions from the direction of dimension splitting and the dimension-splitting subdivision surfaces. Then the ISEFG method can reduce the dimensionality and complexity of matrix operations in solving the shape function, thereby improving the efficiency and accuracy. This paper introduces several numerical examples to demonstrate the effectiveness of the stabilized meshless method. The numerical examples show that the ISEFG method based on the DSMLS approximation can find stable solutions of the velocities and pressure without physical oscillation. The method presented in this paper offers higher accuracy and consumes less CPU time than the EFG method based on the MLS approximation.

Suggested Citation

  • Sun, Fengxin & Wang, Jufeng & Xu, Ying, 2024. "An improved stabilized element-free Galerkin method for solving steady Stokes flow problems," Applied Mathematics and Computation, Elsevier, vol. 463(C).
  • Handle: RePEc:eee:apmaco:v:463:y:2024:i:c:s0096300323005155
    DOI: 10.1016/j.amc.2023.128346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323005155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Ji & Zhang, Yuhui & Reutskiy, Sergiy & Feng, Wenjie, 2021. "A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    2. Jufeng Wang & Fengxin Sun & Rongjun Cheng, 2021. "A Dimension Splitting-Interpolating Moving Least Squares (DS-IMLS) Method with Nonsingular Weight Functions," Mathematics, MDPI, vol. 9(19), pages 1-22, September.
    3. Jing Cheng & Xiaowei Luo, 2022. "Analyzing the Land Leasing Behavior of the Government of Beijing, China, via the Multinomial Logit Model," Land, MDPI, vol. 11(3), pages 1-14, March.
    4. Abbaszadeh, Mostafa & Dehghan, Mehdi, 2021. "Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    5. Ma, Xiao & Zhou, Bo & Xue, Shifeng, 2021. "A meshless Hermite weighted least-square method for piezoelectric structures," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    6. Zhang, Tao & Li, Xiaolin, 2020. "Analysis of the element-free Galerkin method with penalty for general second-order elliptic problems," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    7. Sun, FengXin & Wang, JuFeng, 2017. "Interpolating element-free Galerkin method for the regularized long wave equation and its error analysis," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 54-69.
    8. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yumin Cheng, 2022. "Preface to the Special Issue on “Numerical Computation, Data Analysis and Software in Mathematics and Engineering”," Mathematics, MDPI, vol. 10(13), pages 1-5, June.
    2. Li, Yancheng & Liu, Cong & Li, Wei & Chai, Yingbin, 2023. "Numerical investigation of the element-free Galerkin method (EFGM) with appropriate temporal discretization techniques for transient wave propagation problems," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    3. Heng Cheng & Zebin Xing & Yan Liu, 2023. "The Improved Element-Free Galerkin Method for 3D Steady Convection-Diffusion-Reaction Problems with Variable Coefficients," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
    4. Saffarian, Marziyeh & Mohebbi, Akbar, 2021. "Numerical solution of two and three dimensional time fractional damped nonlinear Klein–Gordon equation using ADI spectral element method," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    5. Huijun Tang & Jufeng Wang & Le Wang, 2023. "Mining Significant Utility Discriminative Patterns in Quantitative Databases," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    6. Khater, Mostafa M.A., 2023. "Computational simulations of propagation of a tsunami wave across the ocean," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Pei Yin & Jing Cheng & Miaojuan Peng, 2022. "Analyzing the Passenger Flow of Urban Rail Transit Stations by Using Entropy Weight-Grey Correlation Model: A Case Study of Shanghai in China," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
    8. Marchetti, F., 2024. "A fast surrogate cross validation algorithm for meshfree RBF collocation approaches," Applied Mathematics and Computation, Elsevier, vol. 481(C).
    9. Jue Qu & Hongjun Xue & Yancheng Li & Yingbin Chai, 2022. "An Enriched Finite Element Method with Appropriate Interpolation Cover Functions for Transient Wave Propagation Dynamic Problems," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
    10. Sina Dang & Gang Wang & Yingbin Chai, 2023. "A Novel “Finite Element-Meshfree” Triangular Element Based on Partition of Unity for Acoustic Propagation Problems," Mathematics, MDPI, vol. 11(11), pages 1-21, May.
    11. Zhang, Yuanjian & Huang, Yanjun & Chen, Haibo & Na, Xiaoxiang & Chen, Zheng & Liu, Yonggang, 2021. "Driving behavior oriented torque demand regulation for electric vehicles with single pedal driving," Energy, Elsevier, vol. 228(C).
    12. Pei Yin & Miaojuan Peng, 2023. "Station Layout Optimization and Route Selection of Urban Rail Transit Planning: A Case Study of Shanghai Pudong International Airport," Mathematics, MDPI, vol. 11(6), pages 1-29, March.
    13. Zhang, Yuhui & Rabczuk, Timon & Lin, Ji & Lu, Jun & Chen, C.S., 2024. "Numerical simulations of two-dimensional incompressible Navier-Stokes equations by the backward substitution projection method," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    14. Zebin Xing & Heng Cheng & Jing Cheng, 2023. "Deep Learning Method Based on Physics-Informed Neural Network for 3D Anisotropic Steady-State Heat Conduction Problems," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    15. Xunbai Du & Sina Dang & Yuzheng Yang & Yingbin Chai, 2022. "The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis," Mathematics, MDPI, vol. 10(23), pages 1-27, December.
    16. Yan Chen & Qiang Du & Xiyang Yin & Renjie Fu & Yiyun Zhu, 2023. "Stress Analysis of the Radius and Ulna in Tennis at Different Flexion Angles of the Elbow," Mathematics, MDPI, vol. 11(16), pages 1-17, August.
    17. Ma, Xiao & Zhou, Bo & Xue, Shifeng, 2022. "A Hermite interpolation element-free Galerkin method for functionally graded structures," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    18. Yingbin Chai & Kangye Huang & Shangpan Wang & Zhichao Xiang & Guanjun Zhang, 2023. "The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation," Mathematics, MDPI, vol. 11(7), pages 1-25, March.
    19. Tingting Sun & Peng Wang & Guanjun Zhang & Yingbin Chai, 2022. "A Modified Radial Point Interpolation Method (M-RPIM) for Free Vibration Analysis of Two-Dimensional Solids," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    20. Mahmoud A. Zaky & Ahmed S. Hendy & Rob H. De Staelen, 2021. "Alikhanov Legendre—Galerkin Spectral Method for the Coupled Nonlinear Time-Space Fractional Ginzburg–Landau Complex System," Mathematics, MDPI, vol. 9(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:463:y:2024:i:c:s0096300323005155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.