IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1664-d1112080.html
   My bibliography  Save this article

The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation

Author

Listed:
  • Yingbin Chai

    (Laboratory of High Performance Ship Technology, Ministry of Education, Wuhan University of Technology, Wuhan 430063, China
    School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Kangye Huang

    (School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Shangpan Wang

    (School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Zhichao Xiang

    (School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Guanjun Zhang

    (Laboratory of High Performance Ship Technology, Ministry of Education, Wuhan University of Technology, Wuhan 430063, China
    School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

Abstract

The traditional finite element method (FEM) could only provide acceptable numerical solutions for the Helmholtz equation in the relatively small wave number range due to numerical dispersion errors. For the relatively large wave numbers, the corresponding FE solutions are never adequately reliable. With the aim to enhance the numerical performance of the FEM in tackling the Helmholtz equation, in this work an extrinsic enriched FEM (EFEM) is proposed to reduce the inherent numerical dispersion errors in the standard FEM solutions. In this extrinsic EFEM, the standard linear approximation space in the linear FEM is enriched extrinsically by using the polynomial and trigonometric functions. The construction of this enriched approximation space is realized based on the partition of unity concept and the highly oscillating features of the Helmholtz equation in relatively large wave numbers can be effectively captured by the employed specially-designed enrichment functions. A number of typical numerical examples are considered to examine the ability of this extrinsic EFEM to control the dispersion error for solving Helmholtz problems. From the obtained numerical results, it is found that this extrinsic EFEM behaves much better than the standard FEM in suppressing the numerical dispersion effects and could provide much more accurate numerical results. In addition, this extrinsic EFEM also possesses higher convergence rate than the conventional FEM. More importantly, the formulation of this extrinsic EFEM can be formulated quite easily without adding the extra nodes. Therefore, the present extrinsic EFEM can be regarded as a competitive alternative to the traditional finite element approach in dealing with the Helmholtz equation in relatively high frequency ranges.

Suggested Citation

  • Yingbin Chai & Kangye Huang & Shangpan Wang & Zhichao Xiang & Guanjun Zhang, 2023. "The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation," Mathematics, MDPI, vol. 11(7), pages 1-25, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1664-:d:1112080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chai, Yingbin & Li, Wei & Liu, Zuyuan, 2022. "Analysis of transient wave propagation dynamics using the enriched finite element method with interpolation cover functions," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Yancheng Li & Sina Dang & Wei Li & Yingbin Chai, 2022. "Free and Forced Vibration Analysis of Two-Dimensional Linear Elastic Solids Using the Finite Element Methods Enriched by Interpolation Cover Functions," Mathematics, MDPI, vol. 10(3), pages 1-21, January.
    3. Lin, Ji & Zhang, Yuhui & Reutskiy, Sergiy & Feng, Wenjie, 2021. "A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    4. Li, Yancheng & Liu, Cong & Li, Wei & Chai, Yingbin, 2023. "Numerical investigation of the element-free Galerkin method (EFGM) with appropriate temporal discretization techniques for transient wave propagation problems," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    5. You, Xiangyu & Li, Wei & Chai, Yingbin, 2020. "A truly meshfree method for solving acoustic problems using local weak form and radial basis functions," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    6. Cong Liu & Shaosong Min & Yandong Pang & Yingbin Chai, 2023. "The Meshfree Radial Point Interpolation Method (RPIM) for Wave Propagation Dynamics in Non-Homogeneous Media," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Dang & Gang Wang & Yingbin Chai, 2023. "A Novel “Finite Element-Meshfree” Triangular Element Based on Partition of Unity for Acoustic Propagation Problems," Mathematics, MDPI, vol. 11(11), pages 1-21, May.
    2. Gui, Qiang & Li, Wei & Chai, Yingbin, 2023. "The enriched quadrilateral overlapping finite elements for time-harmonic acoustics," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    3. Shiyuan E & Yanzhong Wang & Bin Xie & Fengxia Lu, 2023. "A Reliability-Based Robust Design Optimization Method for Rolling Bearing Fatigue under Cyclic Load Spectrum," Mathematics, MDPI, vol. 11(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui, Qiang & Li, Wei & Chai, Yingbin, 2023. "The enriched quadrilateral overlapping finite elements for time-harmonic acoustics," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    2. Xunbai Du & Sina Dang & Yuzheng Yang & Yingbin Chai, 2022. "The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis," Mathematics, MDPI, vol. 10(23), pages 1-27, December.
    3. Li, Yancheng & Liu, Cong & Li, Wei & Chai, Yingbin, 2023. "Numerical investigation of the element-free Galerkin method (EFGM) with appropriate temporal discretization techniques for transient wave propagation problems," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. Sina Dang & Gang Wang & Yingbin Chai, 2023. "A Novel “Finite Element-Meshfree” Triangular Element Based on Partition of Unity for Acoustic Propagation Problems," Mathematics, MDPI, vol. 11(11), pages 1-21, May.
    5. Cong Liu & Shaosong Min & Yandong Pang & Yingbin Chai, 2023. "The Meshfree Radial Point Interpolation Method (RPIM) for Wave Propagation Dynamics in Non-Homogeneous Media," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    6. Tingting Sun & Peng Wang & Guanjun Zhang & Yingbin Chai, 2022. "A Modified Radial Point Interpolation Method (M-RPIM) for Free Vibration Analysis of Two-Dimensional Solids," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    7. Jue Qu & Hongjun Xue & Yancheng Li & Yingbin Chai, 2022. "An Enriched Finite Element Method with Appropriate Interpolation Cover Functions for Transient Wave Propagation Dynamic Problems," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
    8. Yang Zhang & Qiang Gui & Yuzheng Yang & Wei Li, 2022. "The Instability and Response Studies of a Top-Tensioned Riser under Parametric Excitations Using the Differential Quadrature Method," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    9. Qiang Wang & Pyeoungkee Kim & Wenzhen Qu, 2022. "A Hybrid Localized Meshless Method for the Solution of Transient Groundwater Flow in Two Dimensions," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
    10. Cheng Chi & Fajie Wang & Lin Qiu, 2023. "A Novel Coupled Meshless Model for Simulation of Acoustic Wave Propagation in Infinite Domain Containing Multiple Heterogeneous Media," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    11. Sun, Fengxin & Wang, Jufeng & Xu, Ying, 2024. "An improved stabilized element-free Galerkin method for solving steady Stokes flow problems," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    12. Dongdong Liu & Xing Wei & Chengbin Li & Chunguang Han & Xiaxi Cheng & Linlin Sun, 2022. "Transient Dynamic Response Analysis of Two-Dimensional Saturated Soil with Singular Boundary Method," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    13. Sun, Linlin & Fu, Zhuojia & Chen, Zhikang, 2023. "A localized collocation solver based on fundamental solutions for 3D time harmonic elastic wave propagation analysis," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    14. Wang, Fajie & Zhao, Qinghai & Chen, Zengtao & Fan, Chia-Ming, 2021. "Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    15. Jue Qu & Hao Guo & Hongjun Xue & Sina Dang & Yingchun Chen, 2022. "Experimental Study on Manned/Unmanned Thermal Environment in Radar Electronic Shelter Based on Different Air Supply Conditions," Energies, MDPI, vol. 15(4), pages 1-29, February.
    16. Li, Yang & Liu, Dejun & Yin, Zhexu & Chen, Yun & Meng, Jin, 2023. "Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    17. Yancheng Li & Sina Dang & Wei Li & Yingbin Chai, 2022. "Free and Forced Vibration Analysis of Two-Dimensional Linear Elastic Solids Using the Finite Element Methods Enriched by Interpolation Cover Functions," Mathematics, MDPI, vol. 10(3), pages 1-21, January.
    18. Qu, Wenzhen & Sun, Linlin & Li, Po-Wei, 2021. "Bending analysis of simply supported and clamped thin elastic plates by using a modified version of the LMFS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 347-357.
    19. Lin Chen & Wenzhi Xu & Zhuojia Fu, 2022. "A Novel Spatial–Temporal Radial Trefftz Collocation Method for 3D Transient Wave Propagation Analysis with Specified Sound Source Excitation," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    20. Xingxing Yue & Buwen Jiang & Xiaoxuan Xue & Chao Yang, 2022. "A Simple, Accurate and Semi-Analytical Meshless Method for Solving Laplace and Helmholtz Equations in Complex Two-Dimensional Geometries," Mathematics, MDPI, vol. 10(5), pages 1-9, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1664-:d:1112080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.