IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v398y2021ics0096300321000126.html
   My bibliography  Save this article

A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems

Author

Listed:
  • Lin, Ji
  • Zhang, Yuhui
  • Reutskiy, Sergiy
  • Feng, Wenjie

Abstract

For time-dependent problems, a novel space-time backward substitution method is proposed in this paper. By employing the space-time radial basis function and the space-time trigonometric basis function in the original backward substitution method, the space-time backward substitution method is obtained. Compared with the traditional backward substitution method, this novel numerical method avoids the time-difference measurement in the temporal approximation, which may result in accumulative errors, and at the same time maintains the existing advantages. Furthermore, the proposed method can be easily used to solve more general time-dependent problems. To evaluate the accuracy and efficiency, several numerical examples are tested and compared.

Suggested Citation

  • Lin, Ji & Zhang, Yuhui & Reutskiy, Sergiy & Feng, Wenjie, 2021. "A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems," Applied Mathematics and Computation, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:apmaco:v:398:y:2021:i:c:s0096300321000126
    DOI: 10.1016/j.amc.2021.125964
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321000126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.125964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuzhang Wang & Enran Hou & Imtiaz Ahmad, 2020. "A Direct Meshless Method for Solving Two-Dimensional Second-Order Hyperbolic Telegraph Equations," Journal of Mathematics, Hindawi, vol. 2020, pages 1-9, November.
    2. Wang, Dan & Chen, C.S. & Fan, C.M. & Li, Ming, 2019. "The MAPS based on trigonometric basis functions for solving elliptic partial differential equations with variable coefficients and Cauchy–Navier equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 119-135.
    3. Lin, Ji & Reutskiy, S.Y. & Lu, Jun, 2018. "A novel meshless method for fully nonlinear advection–diffusion-reaction problems to model transfer in anisotropic media," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 459-476.
    4. Lin, Ji & Reutskiy, Sergiy, 2020. "A cubic B-spline semi-analytical algorithm for simulation of 3D steady-state convection-diffusion-reaction problems," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Wang & Pyeoungkee Kim & Wenzhen Qu, 2022. "A Hybrid Localized Meshless Method for the Solution of Transient Groundwater Flow in Two Dimensions," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
    2. Li, Yancheng & Liu, Cong & Li, Wei & Chai, Yingbin, 2023. "Numerical investigation of the element-free Galerkin method (EFGM) with appropriate temporal discretization techniques for transient wave propagation problems," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    3. Yingbin Chai & Kangye Huang & Shangpan Wang & Zhichao Xiang & Guanjun Zhang, 2023. "The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation," Mathematics, MDPI, vol. 11(7), pages 1-25, March.
    4. Xunbai Du & Sina Dang & Yuzheng Yang & Yingbin Chai, 2022. "The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis," Mathematics, MDPI, vol. 10(23), pages 1-27, December.
    5. Sina Dang & Gang Wang & Yingbin Chai, 2023. "A Novel “Finite Element-Meshfree” Triangular Element Based on Partition of Unity for Acoustic Propagation Problems," Mathematics, MDPI, vol. 11(11), pages 1-21, May.
    6. Tingting Sun & Peng Wang & Guanjun Zhang & Yingbin Chai, 2022. "A Modified Radial Point Interpolation Method (M-RPIM) for Free Vibration Analysis of Two-Dimensional Solids," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    7. Sun, Fengxin & Wang, Jufeng & Xu, Ying, 2024. "An improved stabilized element-free Galerkin method for solving steady Stokes flow problems," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    8. Jue Qu & Hongjun Xue & Yancheng Li & Yingbin Chai, 2022. "An Enriched Finite Element Method with Appropriate Interpolation Cover Functions for Transient Wave Propagation Dynamic Problems," Mathematics, MDPI, vol. 10(9), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengxin Sun & Jufeng Wang & Xiang Kong & Rongjun Cheng, 2021. "A Dimension Splitting Generalized Interpolating Element-Free Galerkin Method for the Singularly Perturbed Steady Convection–Diffusion–Reaction Problems," Mathematics, MDPI, vol. 9(19), pages 1-15, October.
    2. Farzaneh Safari & Qingshan Tong & Zhen Tang & Jun Lu, 2022. "A Meshfree Approach for Solving Fractional Galilei Invariant Advection–Diffusion Equation through Weighted–Shifted Grünwald Operator," Mathematics, MDPI, vol. 10(21), pages 1-18, October.
    3. Heng Cheng & Zebin Xing & Yan Liu, 2023. "The Improved Element-Free Galerkin Method for 3D Steady Convection-Diffusion-Reaction Problems with Variable Coefficients," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
    4. Lin, Ji & Reutskiy, Sergiy, 2020. "A cubic B-spline semi-analytical algorithm for simulation of 3D steady-state convection-diffusion-reaction problems," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    5. Kheybari, Samad & Darvishi, Mohammad Taghi & Hashemi, Mir Sajjad, 2019. "Numerical simulation for the space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 57-69.
    6. Deka, Dharmaraj & Sen, Shuvam, 2022. "Compact higher order discretization of 3D generalized convection diffusion equation with variable coefficients in nonuniform grids," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:398:y:2021:i:c:s0096300321000126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.