IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v409y2021ics0096300321004884.html
   My bibliography  Save this article

Deep learning for CVA computations of large portfolios of financial derivatives

Author

Listed:
  • Andersson, Kristoffer
  • Oosterlee, Cornelis W.

Abstract

In this paper, we propose a neural network-based method for CVA computations of a portfolio of derivatives. In particular, we focus on portfolios consisting of a combination of derivatives, with and without true optionality, e.g., a portfolio of a mix of European- and Bermudan-type derivatives. CVA is computed, with and without netting, for different levels of WWR and for different levels of credit quality of the counterparty. We show that the CVA is overestimated with up to 25% by using the standard procedure of not adjusting the exercise strategy for the default-risk of the counterparty. For the Expected Shortfall of the CVA dynamics, the overestimation was found to be more than 100% in some non-extreme cases.

Suggested Citation

  • Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "Deep learning for CVA computations of large portfolios of financial derivatives," Applied Mathematics and Computation, Elsevier, vol. 409(C).
  • Handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300321004884
    DOI: 10.1016/j.amc.2021.126399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321004884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Jackwerth, Jens Carsten, 1996. "Generalized Binomial Trees," MPRA Paper 11635, University Library of Munich, Germany, revised 12 May 1997.
    4. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    5. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    6. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    7. Tinne Haentjens & Karel J. in 't Hout, 2015. "ADI Schemes for Pricing American Options under the Heston Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 207-237, July.
    8. Mark Broadie & Menghui Cao, 2008. "Improved lower and upper bound algorithms for pricing American options by simulation," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 845-861.
    9. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    10. Hull, John & White, Alan, 1995. "The impact of default risk on the prices of options and other derivative securities," Journal of Banking & Finance, Elsevier, vol. 19(2), pages 299-322, May.
    11. Jain, Shashi & Oosterlee, Cornelis W., 2015. "The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 412-431.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Stefano Ferretti, 2023. "On the Modeling and Simulation of Portfolio Allocation Schemes: an Approach Based on Network Community Detection," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 969-1005, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Vikranth Lokeshwar & Vikram Bhardawaj & Shashi Jain, 2019. "Neural network for pricing and universal static hedging of contingent claims," Papers 1911.11362, arXiv.org.
    4. Purba Banerjee & Vasudeva Murthy & Shashi Jain, 2021. "Method of lines for valuation and sensitivities of Bermudan options," Papers 2112.01287, arXiv.org.
    5. Ruimeng Hu, 2019. "Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems," Papers 1901.03478, arXiv.org, revised Mar 2020.
    6. Purba Banerjee & Vasudeva Murthy & Shashi Jain, 2024. "Method of Lines for Valuation and Sensitivities of Bermudan Options," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 245-270, January.
    7. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    8. Patrik Karlsson & Shashi Jain & Cornelis W. Oosterlee, 2016. "Fast and accurate exercise policies for Bermudan swaptions in the LIBOR market model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, March.
    9. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    10. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    11. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    12. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    13. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    14. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    15. Nadarajah, Selvaprabu & Margot, François & Secomandi, Nicola, 2017. "Comparison of least squares Monte Carlo methods with applications to energy real options," European Journal of Operational Research, Elsevier, vol. 256(1), pages 196-204.
    16. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Maximilian Mair & Jan Maruhn, 2013. "On the primal-dual algorithm for callable Bermudan options," Review of Derivatives Research, Springer, vol. 16(1), pages 79-110, April.
    18. Mike Ludkovski, 2020. "mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms," Papers 2012.00729, arXiv.org, revised Oct 2022.
    19. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    20. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300321004884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.