IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.01287.html
   My bibliography  Save this paper

Method of lines for valuation and sensitivities of Bermudan options

Author

Listed:
  • Purba Banerjee
  • Vasudeva Murthy
  • Shashi Jain

Abstract

In this paper, we present a computationally efficient technique based on the \emph{Method of Lines} (MOL) for the approximation of the Bermudan option values via the associated partial differential equations (PDEs). The MOL converts the Black Scholes PDE to a system of ordinary differential equations (ODEs). The solution of the system of ODEs so obtained only requires spatial discretization and avoids discretization in time. Additionally, the exact solution of the ODEs can be obtained efficiently using the exponential matrix operation, making the method computationally attractive and straightforward to implement. An essential advantage of the proposed approach is that the associated Greeks can be computed with minimal additional computations. We illustrate, through numerical experiments, the efficacy of the proposed method in pricing and computation of the sensitivities for a European call, cash-or-nothing, powered option, and Bermudan put option.

Suggested Citation

  • Purba Banerjee & Vasudeva Murthy & Shashi Jain, 2021. "Method of lines for valuation and sensitivities of Bermudan options," Papers 2112.01287, arXiv.org.
  • Handle: RePEc:arx:papers:2112.01287
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.01287
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Tinne Haentjens & Karel J. in 't Hout, 2015. "ADI Schemes for Pricing American Options under the Heston Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 207-237, July.
    3. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    4. Thomas Adolfsson & Carl Chiarella & Andrew Ziogas & Jonathan Ziveyi, 2013. "Representation and Numerical Approximation of American Option Prices under Heston Stochastic Volatility Dynamics," Research Paper Series 327, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Darae Jeong & Minhyun Yoo & Junseok Kim, 2018. "Finite Difference Method for the Black–Scholes Equation Without Boundary Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 961-972, April.
    6. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    7. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl & Hongang Yang, 2016. "Pricing American Options under Regime Switching Using Method of Lines," Research Paper Series 368, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Cornelis S. L. De Graaf & Qian Feng & Drona Kandhai & Cornelis W. Oosterlee, 2014. "Efficient Computation Of Exposure Profiles For Counterparty Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-23.
    9. Jain, Shashi & Oosterlee, Cornelis W., 2015. "The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 412-431.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purba Banerjee & Vasudeva Murthy & Shashi Jain, 2024. "Method of Lines for Valuation and Sensitivities of Bermudan Options," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 245-270, January.
    2. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    3. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "Deep learning for CVA computations of large portfolios of financial derivatives," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. Kathrin Glau & Mirco Mahlstedt & Christian Potz, 2018. "A new approach for American option pricing: The Dynamic Chebyshev method," Papers 1806.05579, arXiv.org.
    5. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    7. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    8. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    9. Cornelis S. L. de Graaf & Drona Kandhai & Christoph Reisinger, 2016. "Efficient exposure computation by risk factor decomposition," Papers 1608.01197, arXiv.org, revised Feb 2018.
    10. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019, January-A.
    11. Anastasia Borovykh & Andrea Pascucci & Cornelis W. Oosterlee, 2019. "Efficient Computation of Various Valuation Adjustments Under Local L\'evy Models," Papers 1905.01706, arXiv.org.
    12. Patrik Karlsson & Shashi Jain & Cornelis W. Oosterlee, 2016. "Fast and accurate exercise policies for Bermudan swaptions in the LIBOR market model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, March.
    13. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    14. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    15. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    16. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    17. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    18. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    19. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    20. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.01287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.