IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v377y2020ics009630032030059x.html
   My bibliography  Save this article

Climate change induced migration and the evolution of cooperation

Author

Listed:
  • Dhakal, Sandeep
  • Chiong, Raymond
  • Chica, Manuel
  • Middleton, Richard H.

Abstract

We study the impact of climate change induced migration on the evolution of cooperation using an N-player social dilemma game. Players in the population are divided into non-overlapped groups, and they can choose to either cooperate or defect within their group. At the same time, the players are mapped to the nodes of a scale-free network, enabling them to learn from the actions of players from other groups. Every player is allowed to migrate between groups, and their migration decisions are governed by the risk from climate change at the current group, as well as their ability to adapt. We introduce a cooperation threshold to ensure that a minimum percentage of players cooperate before any benefit can be achieved within a group. Comprehensive simulation experiments show that migration has a positive impact on the level of cooperation, and the cooperative behaviour observed is proportional to the threshold level. This study contributes by being one of the first to study climate change induced migration using evolutionary game theory. Our findings also contribute to the understanding of the impact of cooperation thresholds in promoting cooperative behaviour in multi-player social dilemma games, where players are allowed to migrate.

Suggested Citation

  • Dhakal, Sandeep & Chiong, Raymond & Chica, Manuel & Middleton, Richard H., 2020. "Climate change induced migration and the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 377(C).
  • Handle: RePEc:eee:apmaco:v:377:y:2020:i:c:s009630032030059x
    DOI: 10.1016/j.amc.2020.125090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032030059X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szolnoki, Attila & Perc, Matjaž & Danku, Zsuzsa, 2008. "Towards effective payoffs in the prisoner’s dilemma game on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2075-2082.
    2. DeCanio, Stephen J. & Fremstad, Anders, 2013. "Game theory and climate diplomacy," Ecological Economics, Elsevier, vol. 85(C), pages 177-187.
    3. Chiong, Raymond & Kirley, Michael, 2012. "Random mobility and the evolution of cooperation in spatial N-player iterated Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3915-3923.
    4. Li, Yan & Ye, Hang, 2018. "Effect of the migration mechanism based on risk preference on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 621-632.
    5. Barreira da Silva Rocha, André, 2013. "Evolutionary dynamics of nationalism and migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3183-3197.
    6. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong, 2016. "Promotion of cooperation by payoff-driven migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 506-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Zhenyu & Wei, Wei & Perc, Matjaž & Li, Baifeng & Zheng, Zhiming, 2022. "Coupling group selection and network reciprocity in social dilemmas through multilayer networks," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    2. Shilin Xiao & Liming Zhang & Haihong Li & Qionglin Dai & Junzhong Yang, 2022. "Environment-driven migration enhances cooperation in evolutionary public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-9, April.
    3. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    4. Jiang, Luo-Luo & Gao, Jian & Chen, Zhi & Li, Wen-Jing & Kurths, Jürgen, 2021. "Reducing the bystander effect via decreasing group size to solve the collective-risk social dilemma," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    5. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Wenjian Li & Yang Zhang & Yuanyuan Wu & Xue Han & Benhai Guo & Gang Xie, 2021. "Enterprise Reciprocity and Risk Preferences and the Sustainable Cooperation of Innovation Activities in Industrial Parks," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    3. Marie-Laure Cabon-Dhersin & Nathalie Etchart-Vincent, 2013. "Wording and gender effects in a Game of Chicken. An explorative experimental study," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00796708, HAL.
    4. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    5. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    6. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    7. Karbowski, Adam, 2019. "Greed and fear in downstream R&D games," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 32, pages 63-76.
    8. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    9. Sean B. Walker & Keith W. Hipel, 2017. "Strategy, Complexity and Cooperation: The Sino-American Climate Regime," Group Decision and Negotiation, Springer, vol. 26(5), pages 997-1027, September.
    10. Leonardo Becchetti & Gianluigi Conzo & Francesco Salustri, 2023. "What about the others? Conditional cooperation, climate change perception and ecological actions," Departmental Working Papers of Economics - University 'Roma Tre' 0274, Department of Economics - University Roma Tre.
    11. Xiang Wei & Peng Xu & Shuiting Du & Guanghui Yan & Huayan Pei, 2021. "Reputational preference-based payoff punishment promotes cooperation in spatial social dilemmas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-7, October.
    12. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Chang, Shuhua, 2019. "Impact of probabilistic incentives on the evolution of cooperation in complex topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 307-314.
    13. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    14. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    15. Zhang, Lan & Huang, Changwei, 2023. "Preferential selection to promote cooperation on degree–degree correlation networks in spatial snowdrift games," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    16. Liu, Chen & Guo, Hao & Li, Zhibin & Gao, Xiaoyuan & Li, Shudong, 2019. "Coevolution of multi-game resolves social dilemma in network population," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 402-407.
    17. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    18. Li, Ya & Lan, Xin & Deng, Xinyang & Sadiq, Rehan & Deng, Yong, 2014. "Comprehensive consideration of strategy updating promotes cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 284-292.
    19. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong & Liu, Geng-Geng, 2018. "Promotion of cooperation based on swarm intelligence in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 614-620.
    20. Wolfgang Buchholz & Todd Sandler, 2017. "Successful Leadership in Global Public Good Provision: Incorporating Behavioural Approaches," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(3), pages 591-607, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:377:y:2020:i:c:s009630032030059x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.