IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v348y2019icp385-398.html
   My bibliography  Save this article

Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay

Author

Listed:
  • Gao, Jianfang
  • Liang, Hui
  • Ma, Shufang

Abstract

This paper is mainly concerned with the strong convergence analysis of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations (SVIEs) with constant delay. The solvability and the boundedness of the numerical solution are established. It is proved that the strong convergence order of the semi-implicit Euler method is 0.5 under Lipschitz conditions. Moreover, the strong superconvergence order is 1.0 if further, the kernel σ of the stochastic term satisfies σ(0)=σ(τ)=0. The theoretical results are illustrated by extensive numerical examples.

Suggested Citation

  • Gao, Jianfang & Liang, Hui & Ma, Shufang, 2019. "Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 385-398.
  • Handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:385-398
    DOI: 10.1016/j.amc.2018.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318308919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. K. Maleknejad & M. Khodabin & F. Hosseini Shekarabi, 2014. "Modified Block Pulse Functions for Numerical Solution of Stochastic Volterra Integral Equations," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuping & Yang, Zhanwen & Liang, Hui, 2022. "Analysis of collocation methods for a class of third-kind auto-convolution Volterra integral equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 341-358.
    2. Ahmadinia, M. & Afshariarjmand, H. & Salehi, M., 2023. "Numerical solution of multi-dimensional Itô Volterra integral equations by the second kind Chebyshev wavelets and parallel computing process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    3. Young Hee Geum & Young Ik Kim, 2020. "Computational Bifurcations Occurring on Red Fixed Components in the λ -Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map," Mathematics, MDPI, vol. 8(5), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    2. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    3. I. A. Lubashevsky & R. Mahnke & M. Hajimahmoodzadeh & A. Katsnelson, 2005. "Long-lived states of oscillator chains with dynamical traps," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(1), pages 63-70, March.
    4. Konakov Valentin & Mammen Enno, 2002. "Edgeworth type expansions for Euler schemes for stochastic differential equations," Monte Carlo Methods and Applications, De Gruyter, vol. 8(3), pages 271-286, December.
    5. Kawar Badie Mahmood & Adil Sufian Husain, 2021. "Bernoulli’s Number One Solution for Stochastic Equilibrium," International Journal of Science and Business, IJSAB International, vol. 5(8), pages 194-201.
    6. Bruti-Liberati Nicola & Nikitopoulos-Sklibosios Christina & Platen Eckhard, 2006. "First Order Strong Approximations of Jump Diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 191-209, October.
    7. Gao, Jiti, 2002. "Modeling long-range dependent Gaussian processes with application in continuous-time financial models," MPRA Paper 11973, University Library of Munich, Germany, revised 18 Sep 2003.
    8. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    9. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    10. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    11. Miccichè, S., 2023. "A numerical recipe for the computation of stationary stochastic processes’ autocorrelation function," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    12. Shuaiqiang Liu & Graziana Colonna & Lech A. Grzelak & Cornelis W. Oosterlee, 2023. "GPU acceleration of the Seven-League Scheme for large time step simulations of stochastic differential equations," Papers 2302.05170, arXiv.org.
    13. Mikulevicius, R., 2012. "On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2730-2757.
    14. Borghi, Giacomo & Grassi, Sara & Pareschi, Lorenzo, 2023. "Consensus based optimization with memory effects: Random selection and applications," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    15. Yuan, Haiyan & Zhu, Quanxin, 2024. "Practical stability of the analytical and numerical solutions of stochastic delay differential equations driven by G-Brownian motion via some novel techniques," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, January.
    17. Saha Ray, S. & Singh, P., 2021. "Numerical solution of stochastic Itô-Volterra integral equation by using Shifted Jacobi operational matrix method," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    18. I. Lubashevsky & M. Hajimahmoodzadeh & A. Katsnelson & P. Wagner, 2003. "Noised-induced phase transition in an oscillatory system with dynamical traps," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 36(1), pages 115-118, November.
    19. Ding-Geng Chen & Haipeng Gao & Chuanshu Ji, 2021. "Bayesian Inference for Stochastic Cusp Catastrophe Model with Partially Observed Data," Mathematics, MDPI, vol. 9(24), pages 1-9, December.
    20. Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022. "The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations," Risks, MDPI, vol. 10(3), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:385-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.