IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i1d10.1007_s10959-023-01260-x.html
   My bibliography  Save this article

Convergence of Weak Euler Approximation for Nondegenerate Stochastic Differential Equations Driven by Point and Martingale Measures

Author

Listed:
  • Remigijus Mikulevičius

    (University of Southern California)

  • Changyong Zhang

    (Curtin University)

Abstract

This paper studies the weak Euler approximation for solutions to stochastic differential equations (SDEs) driven by point and martingale measures, with Hölder-continuous coefficients. The equation under consideration includes a nondegenerate main part whose jump intensity measure is absolutely continuous with respect to the Lévy measure of a spherically symmetric stable process. It encompasses a broad range of stochastic processes including the nondegenerate diffusions and SDEs driven by Lévy processes. To investigate the dependence of the convergence rate on the regularity of the coefficients and driving processes, the regularity of a solution to the associated backward Kolmogorov equation is considered. In particular, for the first time the Hölder norm of the subordinated part of the corresponding generator is rigorously estimated.

Suggested Citation

  • Remigijus Mikulevičius & Changyong Zhang, 2024. "Convergence of Weak Euler Approximation for Nondegenerate Stochastic Differential Equations Driven by Point and Martingale Measures," Journal of Theoretical Probability, Springer, vol. 37(1), pages 43-80, March.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:1:d:10.1007_s10959-023-01260-x
    DOI: 10.1007/s10959-023-01260-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01260-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01260-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Hao Xing, 2009. "Regularity of the Optimal Stopping Problem for Jump Diffusions," Papers 0902.2479, arXiv.org, revised Mar 2012.
    2. Kubilius Kestutis & Platen Eckhard, 2002. "Rate of Weak Convergence of the Euler Approximation for Diffusion Processes with Jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 8(1), pages 83-96, December.
    3. Li, Libo & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for spectrally one-sided Lévy driven SDEs with Hölder continuous coefficients," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 15-26.
    4. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    5. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.
    6. Kohatsu-Higa, Arturo & Tankov, Peter, 2010. "Jump-adapted discretization schemes for Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2258-2285, November.
    7. Gobet, Emmanuel & Menozzi, Stéphane, 2004. "Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 201-223, August.
    8. Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Menoukeu Pamen, Olivier & Taguchi, Dai, 2017. "Strong rate of convergence for the Euler–Maruyama approximation of SDEs with Hölder continuous drift coefficient," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2542-2559.
    10. Remigijus Mikulevicius & Eckhard Platen, 1991. "Rate of Convergence of the Euler Approximation for Diffusion Processes," Published Paper Series 1991-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    11. Mikulevicius, R. & Pragarauskas, H., 2009. "On Hölder solutions of the integro-differential Zakai equation," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3319-3355, October.
    12. Valentin Konakov & Stéphane Menozzi, 2011. "Weak Error for Stable Driven Stochastic Differential Equations: Expansion of the Densities," Journal of Theoretical Probability, Springer, vol. 24(2), pages 454-478, June.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikulevicius, R., 2012. "On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2730-2757.
    2. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    3. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    4. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    5. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    6. Holland, Teodor, 2024. "On the weak rate of convergence for the Euler–Maruyama scheme with Hölder drift," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    7. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    8. Miccichè, S., 2023. "A numerical recipe for the computation of stationary stochastic processes’ autocorrelation function," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Ngo, Hoang-Long & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 102-112.
    10. Li, Libo & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for spectrally one-sided Lévy driven SDEs with Hölder continuous coefficients," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 15-26.
    11. Menoukeu Pamen, Olivier & Taguchi, Dai, 2017. "Strong rate of convergence for the Euler–Maruyama approximation of SDEs with Hölder continuous drift coefficient," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2542-2559.
    12. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, June.
    13. De Angelis, Tiziano & Germain, Maximilien & Issoglio, Elena, 2022. "A numerical scheme for stochastic differential equations with distributional drift," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 55-90.
    14. Mascagni Michael & Qiu Yue & Hin Lin-Yee, 2014. "High performance computing in quantitative finance: A review from the pseudo-random number generator perspective," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 101-120, June.
    15. Kubilius Kestutis & Platen Eckhard, 2002. "Rate of Weak Convergence of the Euler Approximation for Diffusion Processes with Jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 8(1), pages 83-96, December.
    16. Rosenbaum, Mathieu & Tankov, Peter, 2011. "Asymptotic results for time-changed Lévy processes sampled at hitting times," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1607-1632, July.
    17. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, December.
    18. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    19. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    20. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:1:d:10.1007_s10959-023-01260-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.