IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v112y2004i2p201-223.html
   My bibliography  Save this article

Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme

Author

Listed:
  • Gobet, Emmanuel
  • Menozzi, Stéphane

Abstract

We are interested in approximating a multidimensional hypoelliptic diffusion process (Xt)t[greater-or-equal, slanted]0 killed when it leaves a smooth domain D. When a discrete Euler scheme with time step h is used, we prove under a noncharacteristic boundary condition that the weak error is upper bounded by , generalizing the result obtained by Gobet in (Stoch. Proc. Appl. 87 (2000) 167) for the uniformly elliptic case. We also obtain a lower bound with the same rate , thus proving that the order of convergence is exactly 1/2. This provides a theoretical explanation of the well-known bias that we can numerically observe in that kind of procedure.

Suggested Citation

  • Gobet, Emmanuel & Menozzi, Stéphane, 2004. "Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 201-223, August.
  • Handle: RePEc:eee:spapps:v:112:y:2004:i:2:p:201-223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00040-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    2. Paolo Baldi & Lucia Caramellino & Maria Gabriella Iovino, 1999. "Pricing General Barrier Options: A Numerical Approach Using Sharp Large Deviations," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 293-321, October.
    3. BALLY Vlad & TALAY Denis, 1996. "The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density," Monte Carlo Methods and Applications, De Gruyter, vol. 2(2), pages 93-128, December.
    4. Alsmeyer, Gerold, 1994. "On the Markov renewal theorem," Stochastic Processes and their Applications, Elsevier, vol. 50(1), pages 37-56, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurélien Alfonsi & Benjamin Jourdain & Arturo Kohatsu-Higa, 2014. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme," Post-Print hal-00727430, HAL.
    2. Pagès Gilles, 2007. "Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and Complexity," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 37-70, April.
    3. Remigijus Mikulevičius & Changyong Zhang, 2024. "Convergence of Weak Euler Approximation for Nondegenerate Stochastic Differential Equations Driven by Point and Martingale Measures," Journal of Theoretical Probability, Springer, vol. 37(1), pages 43-80, March.
    4. Lucia Caramellino & Barbara Pacchiarotti & Simone Salvadei, 2015. "Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 383-401, June.
    5. Emmanuel Gobet, 2009. "Advanced Monte Carlo methods for barrier and related exotic options," Post-Print hal-00319947, HAL.
    6. Lejay, Antoine & Maire, Sylvain, 2007. "Computing the principal eigenvalue of the Laplace operator by a stochastic method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(6), pages 351-363.
    7. Gobet, Emmanuel & Menozzi, Stéphane, 2010. "Stopped diffusion processes: Boundary corrections and overshoot," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 130-162, February.
    8. Cetin, Umut, 2018. "Diffusion transformations, Black-Scholes equation and optimal stopping," LSE Research Online Documents on Economics 87261, London School of Economics and Political Science, LSE Library.
    9. repec:hal:wpaper:hal-00727430 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Caramellino & Barbara Pacchiarotti & Simone Salvadei, 2015. "Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 383-401, June.
    2. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    3. Gobet, Emmanuel & Menozzi, Stéphane, 2010. "Stopped diffusion processes: Boundary corrections and overshoot," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 130-162, February.
    4. Cetin, Umut, 2018. "Diffusion transformations, Black-Scholes equation and optimal stopping," LSE Research Online Documents on Economics 87261, London School of Economics and Political Science, LSE Library.
    5. Baldi, Paolo & Caramellino, Lucia & Rossi, Maurizia, 2020. "Large deviations of conditioned diffusions and applications," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1289-1308.
    6. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    7. Hoel Håkon & von Schwerin Erik & Szepessy Anders & Tempone Raúl, 2014. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 20(1), pages 1-41, March.
    8. Diana Dorobantu & Yahia Salhi & Pierre-Emmanuel Thérond, 2018. "Modelling net carrying amount of shares for market consistent valuation of life insurance liabilities," Working Papers hal-01840057, HAL.
    9. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    10. Anna Knezevic & Nikolai Dokuchaev, 2019. "Approximating intractable short ratemodel distribution with neural network," Papers 1912.12615, arXiv.org, revised Apr 2024.
    11. Bruno Casella & Gareth O. Roberts, 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 449-473, September.
    12. Madalina Deaconu & Samuel Herrmann, 2023. "Strong Approximation of Bessel Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    13. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    14. Rey, Clément, 2019. "Approximation of Markov semigroups in total variation distance under an irregular setting: An application to the CIR process," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 539-571.
    15. Bayer Christian & Szepessy Anders & Tempone Raúl, 2010. "Adaptive weak approximation of reflected and stopped diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 16(1), pages 1-67, January.
    16. Diana Dorobantu & Yahia Salhi & Pierre-E. Thérond, 2020. "Modelling Net Carrying Amount of Shares for Market Consistent Valuation of Life Insurance Liabilities," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 711-745, June.
    17. Pingjin Deng & Xiufang Li, 2017. "Barrier Options Pricing With Joint Distribution Of Gaussian Process And Its Maximum," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-18, September.
    18. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    19. Umut Çetin & Julien Hok, 2024. "Speeding up the Euler scheme for killed diffusions," Finance and Stochastics, Springer, vol. 28(3), pages 663-707, July.
    20. Matoussi Anis & Sabbagh Wissal, 2016. "Numerical computation for backward doubly SDEs with random terminal time," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 229-258, September.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:112:y:2004:i:2:p:201-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.