IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v293y2017icp377-393.html
   My bibliography  Save this article

Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay

Author

Listed:
  • Wang, Guoliang
  • Li, Zhiqiang
  • Zhang, Qingling
  • Yang, Chunyu

Abstract

This paper deals with the robust finite-time stability and stabilization problems of uncertain stochastic delayed jump systems, where the uncertainty is in the form of additive perturbations and exists in the drift and diffusion sections simultaneously. Though perturbation, time-varying delay and Brownian motion existing at the same time, two conditions checking its robust finite-time stability are proposed by a mode-dependent parameter approach, which are different from some existing methods. Based on the proposed results, sufficient conditions for the existence of the state-feedback controller are provided with LMIs, which could be solved directly. It is seen that all the features of the underlying system such as time-varying delay, perturbation, diffusion, mode-dependent parameters and uncertain transition rate matrix play important roles in the system analysis and synthesis of finite-time stability. Finally, numerical examples are used to demonstrate the effectiveness and superiority of the proposed methods.

Suggested Citation

  • Wang, Guoliang & Li, Zhiqiang & Zhang, Qingling & Yang, Chunyu, 2017. "Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 377-393.
  • Handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:377-393
    DOI: 10.1016/j.amc.2016.08.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316305392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.08.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guoliang, 2016. "Mode-independent control of singular Markovian jump systems: A stochastic optimization viewpoint," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 155-170.
    2. Jianwei Xia & Changyin Sun & Xiang Teng & Hongbin Zhang, 2014. "Delay-segment-dependent robust stability for uncertain discrete stochastic Markovian jumping systems with interval time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 271-282.
    3. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2016. "Asynchronous H∞ filtering for 2D discrete Markovian jump systems with sensor failure," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 60-79.
    4. Qi, Wenhai & Gao, Xianwen, 2016. "H∞ observer design for stochastic time-delayed systems with Markovian switching under partly known transition rates and actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 80-97.
    5. Ma, Yuechao & Chen, Hui, 2015. "Reliable finite-time H∞ filtering for discrete time-delay systems with Markovian jump and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 897-915.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    3. Wang, Guoliang & Cai, Hongyang & Zhang, Qingling & Yang, Chunyu, 2017. "Stabilization of stochastic delay systems via a disordered controller," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 98-109.
    4. Puangmalai, Jirapong & Tongkum, Jakkrapong & Rojsiraphisal, Thaned, 2020. "Finite-time stability criteria of linear system with non-differentiable time-varying delay via new integral inequality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 170-186.
    5. Lin, Xiangze & Zhang, Wanli & Huang, Shuaiting & Zheng, Enlai, 2020. "Finite-time stabilization of input-delay switched systems," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    6. Xikui Liu & Wencong Li & Chenxin Yao & Yan Li, 2022. "Finite-Time Guaranteed Cost Control for Markovian Jump Systems with Time-Varying Delays," Mathematics, MDPI, vol. 10(12), pages 1-12, June.
    7. Harshavarthini, S. & Kwon, O.M. & Lee, S.M., 2022. "Uncertainty and disturbance estimator-based resilient tracking control design for fuzzy semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    8. Feng, Bo & Feng, Zhiguang & Li, Peng, 2023. "Improved results on reachable set synthesis of Markovian jump systems with time-varying delays: General asynchronous control approaches," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Li, Jian & Wu, Chun-Yu, 2017. "Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 259-270.
    10. Zhao, Wenying & Ma, Yuechao & Chen, Aihong & Fu, Lei & Zhang, Yutong, 2019. "Robust sliding mode control for Markovian jump singular systems with randomly changing structure," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 81-96.
    11. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    12. Wenhai Qi & Yonggui Kao & Xianwen Gao, 2017. "Further results on finite-time stabilisation for stochastic Markovian jump systems with time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(14), pages 2967-2975, October.
    13. Shi, Xuanxuan & Shen, Mouquan, 2019. "A new approach to feedback feed-forward iterative learning control with random packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 399-412.
    14. Lin, Xiangze & Li, Shihua & Zou, Yun, 2017. "Finite-time stabilization of switched linear time-delay systems with saturating actuators," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 66-79.
    15. Hyun Kim, Sung, 2019. "Generalized relaxation techniques for robust H∞ filtering of nonhomogeneous Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 542-556.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guoliang & Cai, Hongyang & Zhang, Qingling & Yang, Chunyu, 2017. "Stabilization of stochastic delay systems via a disordered controller," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 98-109.
    2. Guoliang Wang & Bo Feng, 2016. "Finite-Time Stabilization for Discrete-Time Delayed Markovian Jump Systems with Partially Delayed Actuator Saturation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-12, November.
    3. Gao, Xianwen & He, Hangfeng & Qi, Wenhai, 2017. "Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 431-441.
    4. Sakthivel, R. & Saravanakumar, T. & Kaviarasan, B. & Marshal Anthoni, S., 2016. "Dissipativity based repetitive control for switched stochastic dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 340-353.
    5. Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
    6. Shen, Zixiang & Li, Chuandong & Li, Hongfei & Cao, Zhengran, 2019. "Estimation of the domain of attraction for discrete-time linear impulsive control systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    7. Hyun Kim, Sung, 2019. "Generalized relaxation techniques for robust H∞ filtering of nonhomogeneous Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 542-556.
    8. Yue-Chao Ma & Yang-Fan Liu & Hui Chen, 2017. "Reliable finite-time control of uncertain singular nonlinear Markovian jump systems with bounded transition probabilities and time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(11), pages 2249-2261, August.
    9. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    10. Feng, Bo & Feng, Zhiguang & Li, Peng, 2023. "Improved results on reachable set synthesis of Markovian jump systems with time-varying delays: General asynchronous control approaches," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    11. Zhuang, Guangming & Xu, Shengyuan & Xia, Jianwei & Ma, Qian & Zhang, Zhengqiang, 2019. "Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 21-32.
    12. Zhang, Jie & Sun, Yuangong & Meng, Fanwei, 2020. "State bounding for discrete-time switched nonlinear time-varying systems using ADT method," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    13. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2016. "Asynchronous H∞ filtering for 2D discrete Markovian jump systems with sensor failure," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 60-79.
    14. Wang, Huajian & Qi, Wenhai & Zhang, Lihua & Cheng, Jun & Kao, Yonggui, 2020. "Stability and stabilization for positive systems with semi-Markov switching," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    15. Zhao, Yinghong & Ma, Yuechao, 2021. "Asynchronous H∞ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    16. Tian, Yufeng & Wang, Yuzhong & Ren, Junchao, 2020. "Stability analysis and control design of singular Markovian jump systems via a parameter-dependent reciprocally convex matrix inequality," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    17. Ma, Yuechao & Jia, Xiaorui & Liu, Deyou, 2016. "Robust finite-time H∞ control for discrete-time singular Markovian jump systems with time-varying delay and actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 213-227.
    18. Kwon, Nam Kyu & Park, In Seok & Park, PooGyeon, 2017. "H∞ control for singular Markovian jump systems with incomplete knowledge of transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 126-135.
    19. Liu, Yangfan & Ma, Yuechao & Wang, Yanning, 2018. "Reliable finite-time sliding-mode control for singular time-delay system with sensor faults and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 341-357.
    20. Wei Guan & Lei Fu & Yuechao Ma, 2019. "Finite-Time Filtering for Discrete-Time Singular Markovian Jump Systems with Time Delay and Input Saturation," Complexity, Hindawi, vol. 2019, pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:377-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.