IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v407y2021ics0096300321003933.html
   My bibliography  Save this article

Asynchronous H∞ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach

Author

Listed:
  • Zhao, Yinghong
  • Ma, Yuechao

Abstract

This paper addresses the asynchronous H∞ control problem for hidden singular Markov jump systems (HSMJSs) with incomplete transition probabilities. By employing the state decomposition approach, a novel augmented Lyapunov-Krasovkii functional (LKF) with the components of state vectors is designed to reduce the redundant decision variables. Meanwhile, a parameter-dependent reciprocally convex matrix inequality (PDRCMI) is introduced to decrease conservatism. To handle the non-synchronization phenomenon of the system mode and the controller mode, an asynchronous state feedback controller based on hidden Markov model (HMM) is developed. In addition, the incomplete transition probabilities are considered so that a more practical potential strategy is addressed. Finally, numerical examples are provided to illustrate the superiority and practicability of the presented results.

Suggested Citation

  • Zhao, Yinghong & Ma, Yuechao, 2021. "Asynchronous H∞ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 407(C).
  • Handle: RePEc:eee:apmaco:v:407:y:2021:i:c:s0096300321003933
    DOI: 10.1016/j.amc.2021.126304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321003933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    2. Kong, Chuifeng & Ma, Yuechao & Liu, Deyou, 2019. "Observer-based quantized sliding mode dissipative control for singular semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Fu, Lei & Ma, Yuechao, 2016. "Passive control for singular time-delay system with actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 181-193.
    4. Wang, Guoliang, 2016. "Mode-independent control of singular Markovian jump systems: A stochastic optimization viewpoint," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 155-170.
    5. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    6. Li, Min & Liu, Ming & Zhang, Yingchun, 2020. "Asynchronous adaptive dynamic output feedback sliding mode control for singular markovian jump systems with actuator faults and uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    7. Tian, Yufeng & Wang, Yuzhong & Ren, Junchao, 2020. "Stability analysis and control design of singular Markovian jump systems via a parameter-dependent reciprocally convex matrix inequality," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    8. Zhao, Wenying & Ma, Yuechao & Chen, Aihong & Fu, Lei & Zhang, Yutong, 2019. "Robust sliding mode control for Markovian jump singular systems with randomly changing structure," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 81-96.
    9. Wang, Yanqian & Chen, Fu & Zhuang, Guangming & Yang, Guang, 2020. "Dynamic event-based mixed H∞ and dissipative asynchronous control for Markov jump singularly perturbed systems," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    10. Ya-Li Zhi & Yong He & Jianhua Shen & Min Wu, 2018. "New stability criteria of singular systems with time-varying delay via free-matrix-based integral inequality," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(5), pages 1032-1039, April.
    11. Tao, Ruifeng & Ma, Yuechao & Wang, Chunjiao, 2020. "Stochastic admissibility of singular Markov jump systems with time-delay via sliding mode approach," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    12. Kwon, Nam Kyu & Park, In Seok & Park, PooGyeon, 2017. "H∞ control for singular Markovian jump systems with incomplete knowledge of transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 126-135.
    13. Yan, Zhiguo & Song, Yunxia & Liu, Xiaoping, 2018. "Finite-time stability and stabilization for Itô-type stochastic Markovian jump systems with generally uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 512-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wenbin & Lu, Junwei & Zhuang, Guangming & Gao, Fang & Zhang, Zhengqiang & Xu, Shengyuan, 2022. "Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. Fan, Gaofeng & Ma, Yuechao, 2023. "Fault-tolerant fixed/preassigned-time synchronization control of uncertain singularly perturbed complex networks with time-varying delay and stochastic disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    2. Zhang, Jianan & Ma, Yuechao, 2023. "Adaptive fault-tolerant double asynchronous control for switched semi-Markov jump systems via improved memory sampled-data technique," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Fu, Xiuwen & Sheng, Zhaoliang & Lin, Chong & Chen, Bing, 2022. "New results on admissibility and dissipativity analysis of descriptor time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    4. Sakthivel, Ramalingam & Sakthivel, Rathinasamy & Kwon, Oh-Min & Selvaraj, Palanisamy, 2021. "Disturbance rejection for singular semi-Markov jump neural networks with input saturation," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    5. Tian, Yufeng & Wang, Yuzhong & Ren, Junchao, 2020. "Stability analysis and control design of singular Markovian jump systems via a parameter-dependent reciprocally convex matrix inequality," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    6. Han, Lihuan & Ma, Yuechao, 2024. "Learning-based asynchronous sliding mode control for semi-Markov jump systems with time-varying delay using relaxed negative-determination lemma," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous H∞ observer-based control synthesis of nonhomogeneous Markovian jump systems with generalized incomplete transition rates," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    8. Kong, Chuifeng & Ma, Yuechao & Liu, Deyou, 2019. "Observer-based quantized sliding mode dissipative control for singular semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    9. Xu, Qiyi & Zhang, Yijun & Qi, Wenhai & Xiao, Shunyuan, 2020. "Event-triggered mixed H∞ and passive filtering for discrete-time networked singular Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    10. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    11. Fu, Xiaozheng & Zhu, Quanxin & Guo, Yingxin, 2019. "Stabilization of stochastic functional differential systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 776-789.
    12. Xing, Mingqi & Wang, Yanqian & Zhuang, Guangming & Chen, Fu, 2021. "Event-based asynchronous and resilient filtering for singular Markov jump LPV systems against deception attacks," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    13. Feng, Bo & Feng, Zhiguang & Li, Peng, 2023. "Improved results on reachable set synthesis of Markovian jump systems with time-varying delays: General asynchronous control approaches," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    14. Fan, Gaofeng & Ma, Yuechao, 2023. "Fault-tolerant fixed/preassigned-time synchronization control of uncertain singularly perturbed complex networks with time-varying delay and stochastic disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    15. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    16. Wang, Guoliang & Li, Zhiqiang & Zhang, Qingling & Yang, Chunyu, 2017. "Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 377-393.
    17. Wang, Guoliang & Cai, Hongyang & Zhang, Qingling & Yang, Chunyu, 2017. "Stabilization of stochastic delay systems via a disordered controller," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 98-109.
    18. Guo, Beibei & Wu, Yinhu & Xiao, Yu & Zhang, Chiping, 2018. "Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 341-357.
    19. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    20. Shi, Kaibo & Wang, Jun & Zhong, Shouming & Zhang, Xiaojun & Liu, Yajuan & Cheng, Jun, 2019. "New reliable nonuniform sampling control for uncertain chaotic neural networks under Markov switching topologies," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 169-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:407:y:2021:i:c:s0096300321003933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.