IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v380y2020ics0096300320302514.html
   My bibliography  Save this article

Stochastic admissibility of singular Markov jump systems with time-delay via sliding mode approach

Author

Listed:
  • Tao, Ruifeng
  • Ma, Yuechao
  • Wang, Chunjiao

Abstract

In this article, stochastic admissibility of singular Markov jumping systems (SMJSs) with time-varying delays is studied by sliding mo de control (SMC) method. Firstly, we construct integral-type sliding mode switching functions for each Markov jump subsystem, next, we construct some linear matrix inequalities(LMI) and sufficient conditions for stochastic admissibility are given. Then the sliding mo de controller and switching rules are designed by Lyapunov stability method, the state trajectory can reach the sliding mode surface (SMS) in a limited time, resulting in stable sliding mode dynamics. Finally, two examples are given to illustrate the effectiveness and feasibility of the proposed scheme.

Suggested Citation

  • Tao, Ruifeng & Ma, Yuechao & Wang, Chunjiao, 2020. "Stochastic admissibility of singular Markov jump systems with time-delay via sliding mode approach," Applied Mathematics and Computation, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:apmaco:v:380:y:2020:i:c:s0096300320302514
    DOI: 10.1016/j.amc.2020.125282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320302514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Mengping & Xia, Jianwei & Wang, Jing & Meng, Bo & Shen, Hao, 2019. "Asynchronous H∞ filtering for nonlinear persistent dwell-time switched singular systems with measurement quantization," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. Jiang, Baoping & Gao, Cunchen & Kao, Yonggui & Liu, Zhen, 2016. "Sliding mode control of Markovian jump systems with incomplete information on time-varying delays and transition rates," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 66-79.
    3. Mengping Xing & Hao Shen & Zhen Wang, 2018. "Synchronization of Semi-Markovian Jump Neural Networks with Randomly Occurring Time-Varying Delays," Complexity, Hindawi, vol. 2018, pages 1-16, September.
    4. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    5. Liu, Yangfan & Ma, Yuechao & Wang, Yanning, 2018. "Reliable finite-time sliding-mode control for singular time-delay system with sensor faults and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 341-357.
    6. Liang, Xingyue & Xia, Jianwei & Chen, Guoliang & Zhang, Huasheng & Wang, Zhen, 2019. "Dissipativity-based sampled-data control for fuzzy Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 552-564.
    7. Jiang, Baoping & Gao, Cunchen & Xie, Jing, 2015. "Passivity based sliding mode control of uncertain singular Markovian jump systems with time-varying delay and nonlinear perturbations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 187-200.
    8. Zhao, Wenying & Ma, Yuechao & Chen, Aihong & Fu, Lei & Zhang, Yutong, 2019. "Robust sliding mode control for Markovian jump singular systems with randomly changing structure," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 81-96.
    9. Yonggui Kao & Hamid Reza Karimi, 2014. "Stability in Mean of Partial Variables for Coupled Stochastic Reaction-Diffusion Systems on Networks: A Graph Approach," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yinghong & Ma, Yuechao, 2021. "Asynchronous H∞ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 407(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    2. Zhao, Wenying & Ma, Yuechao & Chen, Aihong & Fu, Lei & Zhang, Yutong, 2019. "Robust sliding mode control for Markovian jump singular systems with randomly changing structure," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 81-96.
    3. Liu, Xinmiao & Xia, Jianwei & Huang, Xia & Shen, Hao, 2020. "Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Zhen & Wang, Jian, 2020. "Reachable set estimation for Markov jump LPV systems with time delays," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    5. Cai, Xiao & Zhong, Shouming & Wang, Jun & Shi, Kaibo, 2020. "Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    6. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    7. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Xia, Yude & Wang, Jing & Meng, Bo & Chen, Xiangyong, 2020. "Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    9. Xue, Yanmei & Zheng, Bo-Chao & Li, Tao & Li, Yuanlu, 2017. "Robust adaptive state feedback sliding-mode control of memristor-based Chua’s systems with input nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 142-153.
    10. Guo, Xiyue & Liang, Hongjing & Pan, Yingnan, 2020. "Observer-Based Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Multi-Agent Systems with Dead-Zone Input," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    11. Kong, Chuifeng & Ma, Yuechao & Liu, Deyou, 2019. "Observer-based quantized sliding mode dissipative control for singular semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    12. Mathiyalagan, Kalidass & Sangeetha, G., 2020. "Second-order sliding mode control for nonlinear fractional-order systems," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    13. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    14. Obaid Alshammari & Mourad Kchaou & Houssem Jerbi & Sondess Ben Aoun & Víctor Leiva, 2022. "A Fuzzy Design for a Sliding Mode Observer-Based Control Scheme of Takagi-Sugeno Markov Jump Systems under Imperfect Premise Matching with Bio-Economic and Industrial Applications," Mathematics, MDPI, vol. 10(18), pages 1-28, September.
    15. Wang, Jinling & Liang, Jinling & Zhang, Cheng-Tang & Fan, Dongmei, 2021. "Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    16. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    17. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    18. Kwon, W. & Jin, Yongsik & Lee, S.M., 2020. "PI-type event-triggered H∞ filter for networked T-S fuzzy systems using affine matched membership function approach," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    19. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    20. Selvaraj, P. & Kwon, O.M. & Lee, S.H. & Sakthivel, R., 2022. "Disturbance rejections of interval type-2 fuzzy systems under event-triggered control scheme," Applied Mathematics and Computation, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:380:y:2020:i:c:s0096300320302514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.