IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v355y2019icp21-32.html
   My bibliography  Save this article

Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays

Author

Listed:
  • Zhuang, Guangming
  • Xu, Shengyuan
  • Xia, Jianwei
  • Ma, Qian
  • Zhang, Zhengqiang

Abstract

This paper is concerned with the problem of non-fragile delay feedback control for neutral stochastic Markovian jump systems (NSMJSs) with time-varying delays. The main aim is to design non-fragile and mode-dependent delay feedback controller (DFC) both in the drift part and in the diffusion part to realize closed-loop NSMJS is stochastically stable. By constructing mode-dependent and delay-dependent comprehensive Lyapunov-Krasovskii functional, the stabilization conditions are provided in terms of linear matrix inequalities (LMIs). Simulation examples including a lossless transmission line model (LTLM) are utilized to verify the validity and usefulness of the proposed method.

Suggested Citation

  • Zhuang, Guangming & Xu, Shengyuan & Xia, Jianwei & Ma, Qian & Zhang, Zhengqiang, 2019. "Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 21-32.
  • Handle: RePEc:eee:apmaco:v:355:y:2019:i:c:p:21-32
    DOI: 10.1016/j.amc.2019.02.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    2. Liang, Kun & Dai, Mingcheng & Shen, Hao & Wang, Jing & Wang, Zhen & Chen, Bo, 2018. "L2−L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 450-462.
    3. Jianwei Xia & Changyin Sun & Xiang Teng & Hongbin Zhang, 2014. "Delay-segment-dependent robust stability for uncertain discrete stochastic Markovian jumping systems with interval time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 271-282.
    4. R. Saravanakumar & M. Syed Ali & H. R. Karimi, 2017. "Robust control of uncertain stochastic Markovian jump systems with mixed time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(4), pages 862-872, March.
    5. Guangming Zhuang & Jianwei Xia & Weihai Zhang & Wei Sun & Qun Sun, 2018. "Normalisation design for delayed singular Markovian jump systems based on system transformation technique," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(8), pages 1603-1614, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huasheng & Zhuang, Guangming & Sun, Wei & Li, Yongmin & Lu, Junwei, 2020. "pth moment asymptotic interval stability and stabilization of linear stochastic systems via generalized H-representation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Liu, Jiamin & Li, Zhao-Yan & Deng, Feiqi, 2021. "Asymptotic behavior analysis of Markovian switching neutral-type stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    3. Wang, Yanqian & Chen, Fu & Zhuang, Guangming & Yang, Guang, 2020. "Dynamic event-based mixed H∞ and dissipative asynchronous control for Markov jump singularly perturbed systems," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Tai, Weipeng & Zuo, Dandan & Xuan, Zuxing & Zhou, Jianping & Wang, Zhen, 2021. "Non-fragile L2−L∞ filtering for a class of switched neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 629-645.
    5. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Huang, Xin & Liu, Yamin & Wang, Yang & Zhou, Jianping & Fang, Muyun & Wang, Zhen, 2020. "L2−L∞ consensus of stochastic delayed multi-agent systems with ADT switching interaction topologies," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    7. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    8. Lin, Yuqian & Zhuang, Guangming & Sun, Wei & Zhao, Junsheng & Chu, Yuming, 2021. "Resilient H∞ dynamic output feedback controller design for USJSs with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    9. Shi, Shang & Min, Huifang & Hu, Yinlong & Sun, Yonghui & Wang, Bing, 2020. "A novel hybrid scheme for fixed-time SOSM control of nonlinear uncertain systems subject to mismatched terms," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    10. Divya, H. & Sakthivel, R. & Karthick, S.A. & Aouiti, C., 2022. "Non-fragile control design for stochastic Markov jump system with multiple delays and cyber attacks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 291-302.
    11. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    2. Fan, Gaofeng & Ma, Yuechao, 2023. "Fault-tolerant fixed/preassigned-time synchronization control of uncertain singularly perturbed complex networks with time-varying delay and stochastic disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Long, Shaohua & Wu, Yunlong & Zhong, Shouming & Zhang, Dian, 2018. "Stability analysis for a class of neutral type singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 113-131.
    4. Ziye Zhang & Xiaoping Liu & Chong Lin & Bing Chen, 2018. "Finite-Time Synchronization for Complex-Valued Recurrent Neural Networks with Time Delays," Complexity, Hindawi, vol. 2018, pages 1-14, December.
    5. Fu, Xiaozheng & Zhu, Quanxin & Guo, Yingxin, 2019. "Stabilization of stochastic functional differential systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 776-789.
    6. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    7. Li, Tao & Tang, Xiaoling & Qian, Wei & Fei, Shumin, 2019. "Hybrid-delay-dependent approach to synchronization in distributed delay neutral neural networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 449-463.
    8. Yueping Sun & Li Ma & Dean Zhao & Shihong Ding, 2018. "A Compound Controller Design for a Buck Converter," Energies, MDPI, vol. 11(9), pages 1-17, September.
    9. Xia, ZeLiang & He, Shuping, 2022. "Finite-time asynchronous H∞ fault-tolerant control for nonlinear hidden markov jump systems with actuator and sensor faults," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    10. Tan, Lihua & Li, Chuandong & Huang, Junjian & Huang, Tingwen, 2021. "Output feedback leader-following consensus for nonlinear stochastic multiagent systems: The event-triggered method," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    11. Zhang, Dian & Cheng, Jun & Ki Ahn, Choon & Ni, Hongjie, 2019. "A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 191-205.
    12. Yang, Yi & Li, Xiaohua & Liu, Xiaoping, 2022. "Decentralized finite-time connective tracking control with prescribed settling time for p-normal form stochastic large-scale systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    13. Zeng, Deqiang & Pu, Zhilin & Zhang, Ruimei & Zhong, Shouming & Liu, Yajuan & Wu, Guo-Cheng, 2019. "Stochastic reliable synchronization for coupled Markovian reaction–diffusion neural networks with actuator failures and generalized switching policies," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 88-106.
    14. Bin Yang & Xin Wang & Yongju Zhang & Yuhua Xu & Wuneng Zhou, 2019. "Finite-Time Synchronization and Synchronization Dynamics Analysis for Two Classes of Markovian Switching Multiweighted Complex Networks from Synchronization Control Rule Viewpoint," Complexity, Hindawi, vol. 2019, pages 1-17, March.
    15. Luo, Yiping & Yao, Yuejie & Cheng, Zifeng & Xiao, Xing & Liu, Hanyu, 2021. "Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    16. Xia, Weifeng & Xu, Shengyuan & Lu, Junwei & Li, Yongmin & Chu, Yuming & Zhang, Zhengqiang, 2021. "Event-triggered filtering for discrete-time Markovian jump systems with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    17. Li, Tao & Dai, Zhuxiang & Song, Gongfei & Du, Haiping, 2019. "Simultaneous disturbance estimation and fault reconstruction using probability density functions," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    18. Lu, Jianquan & Guo, Xing & Huang, Tingwen & Wang, Zhen, 2019. "Consensus of signed networked multi-agent systems with nonlinear coupling and communication delays," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 153-162.
    19. Han, Jian & Liu, Xiuhua & Wei, Xinjiang & Zhang, Huifeng & Hu, Xin, 2021. "Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    20. Ge, Chao & Shi, Yanpen & Park, Ju H. & Hua, Changchun, 2019. "Robust H∞ stabilization for T-S fuzzy systems with time-varying delays and memory sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 500-512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:355:y:2019:i:c:p:21-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.