IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v329y2018icp52-63.html
   My bibliography  Save this article

Finite-time boundary control for delay reaction–diffusion systems

Author

Listed:
  • Wu, Kai-Ning
  • Sun, Han-Xiao
  • Yang, Baoqing
  • Lim, Cheng-Chew

Abstract

This paper considers finite-time stabilization and H∞ performance for delay reaction–diffusion systems by boundary control. First, a full-domain controller is designed and sufficient conditions are obtained to achieve finite-time stability using finite-time stability lemma and Wirtinger’s inequality method. Then a boundary controller furnished with sufficient conditions to achieve finite-time stability is presented. When taking into consideration external noise on a delay reaction–diffusion system, finite horizon H∞ boundary control with a criterion that guarantees the H∞ performance of delay reaction–diffusion systems is proposed. How to handle Neumann boundary conditions and mixed boundary conditions are discussed. Numerical simulations are carried out to verify the effectiveness of our theoretical results.

Suggested Citation

  • Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
  • Handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:52-63
    DOI: 10.1016/j.amc.2018.01.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318300717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.01.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Guoliang & Xia, Jianwei & Zhuang, Guangming & Zhao, Junsheng, 2018. "Improved delay-dependent stabilization for a class of networked control systems with nonlinear perturbations and two delay components," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 1-17.
    2. Chen, Guici & Gao, Yu & Zhu, Shasha, 2017. "Finite-time dissipative control for stochastic interval systems with time-delay and Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 169-181.
    3. Wang, Guoliang & Li, Zhiqiang & Zhang, Qingling & Yang, Chunyu, 2017. "Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 377-393.
    4. Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
    5. Shen, Mouquan & Yan, Shen & Zhang, Guangming & Park, Ju H., 2016. "Finite-time H∞ static output control of Markov jump systems with an auxiliary approach," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 553-561.
    6. Shen, Mouquan & Ye, Dan, 2017. "A finite frequency approach to control of Markov jump linear systems with incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 53-64.
    7. Wang, Yijing & Zou, Yanchao & Zuo, Zhiqiang & Li, Hongchao, 2016. "Finite-time stabilization of switched nonlinear systems with partial unstable modes," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 172-181.
    8. Zhang, Yingqi & Shi, Yan & Shi, Peng, 2016. "Robust and non-fragile finite-time H∞ control for uncertain Markovian jump nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 125-138.
    9. Lin, Xiangze & Li, Shihua & Zou, Yun, 2017. "Finite-time stabilization of switched linear time-delay systems with saturating actuators," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 66-79.
    10. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    11. Li, Lingchun & Shen, Mouquan & Zhang, Guangming & Yan, Shen, 2017. "H∞ control of Markov jump systems with time-varying delay and incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 95-106.
    12. Li, Ruoxia & Cao, Jinde, 2016. "Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 54-69.
    13. Xu, Qiyi & Zhang, Yijun & He, Wangli & Xiao, Shunyuan, 2017. "Event-triggered networked H∞ control of discrete-time nonlinear singular systems," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 368-382.
    14. Yan, Zhiguo & Song, Yunxia & Liu, Xiaoping, 2018. "Finite-time stability and stabilization for Itô-type stochastic Markovian jump systems with generally uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 512-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Xin-Xin & Wu, Kai-Ning & Ding, Xiaohua, 2020. "Finite-time stabilization for stochastic reaction-diffusion systems with Markovian switching via boundary control," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Luo, Yiping & Yao, Yuejie & Cheng, Zifeng & Xiao, Xing & Liu, Hanyu, 2021. "Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    2. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    3. Aravindh, D. & Sakthivel, R. & Kong, Fanchao & Marshal Anthoni, S., 2020. "Finite-time reliable stabilization of uncertain semi-Markovian jump systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    4. Gao, Xianwen & He, Hangfeng & Qi, Wenhai, 2017. "Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 431-441.
    5. Lin, Xiangze & Zhang, Wanli & Huang, Shuaiting & Zheng, Enlai, 2020. "Finite-time stabilization of input-delay switched systems," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    6. Yan, Zhiguo & Zhang, Min & Chang, Gaizhen & Lv, Hui & Park, Ju H., 2022. "Finite-time annular domain stability and stabilization of Itô stochastic systems with Wiener noise and Poisson jumps-differential Gronwall inequality approach," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    7. Li, Lingchun & Shen, Mouquan & Zhang, Guangming & Yan, Shen, 2017. "H∞ control of Markov jump systems with time-varying delay and incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 95-106.
    8. Hyun Kim, Sung, 2019. "Generalized relaxation techniques for robust H∞ filtering of nonhomogeneous Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 542-556.
    9. Zhang, Jing & Xia, Jianwei & Sun, Wei & Zhuang, Guangming & Wang, Zhen, 2018. "Finite-time tracking control for stochastic nonlinear systems with full state constraints," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 207-220.
    10. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Song, Xiaona & Wang, Mi & Song, Shuai & Wang, Zhen, 2019. "Quantized output feedback control for nonlinear Markovian jump distributed parameter systems with unreliable communication links," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 371-395.
    12. Xikui Liu & Wencong Li & Chenxin Yao & Yan Li, 2022. "Finite-Time Guaranteed Cost Control for Markovian Jump Systems with Time-Varying Delays," Mathematics, MDPI, vol. 10(12), pages 1-12, June.
    13. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    14. Lin, Xiangze & Li, Shihua & Zou, Yun, 2017. "Finite-time stabilization of switched linear time-delay systems with saturating actuators," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 66-79.
    15. Wang, Zhichuang & Chen, Guoliang & Ba, Hezhen, 2019. "Stability analysis of nonlinear switched systems with sampled-data controllers," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 297-309.
    16. Gao, Rui & Zhai, Ding & Cheng, Jun, 2019. "Decentralized static output feedback sliding mode control for interconnected descriptor systems via linear sliding variable," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 185-198.
    17. Chen, Weimin & Zhang, Baoyong & Ma, Qian, 2018. "Decay-rate-dependent conditions for exponential stability of stochastic neutral systems with Markovian jumping parameters," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 93-105.
    18. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    19. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    20. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:52-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.