IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v286y2016icp72-87.html
   My bibliography  Save this article

Robust control of uncertain semi-Markovian jump systems using sliding mode control method

Author

Listed:
  • Zhou, Qi
  • Yao, Deyin
  • Wang, Jiahui
  • Wu, Chengwei

Abstract

The problem of robust adaptive sliding mode control for semi-Markovian jump systems with actuator faults is investigated in this paper. The uncertainties considered in this paper satisfy norm-bounded form, and bounds of nonlinearity, actuator faults and external disturbance are unknown. Then, the influences of the actuator faults, unknown nonlinearity and disturbance can be effectively attenuated via a novel adaptive sliding mode controller. The reachability of sliding mode surface can be guaranteed by the adaptive sliding mode controller. Using Lyapunov stability theory, sufficient conditions are derived to guarantee the stochastic stability of the sliding mode dynamics. Finally, a numerical example is exploited to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
  • Handle: RePEc:eee:apmaco:v:286:y:2016:i:c:p:72-87
    DOI: 10.1016/j.amc.2016.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316302065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Baoping & Gao, Cunchen & Xie, Jing, 2015. "Passivity based sliding mode control of uncertain singular Markovian jump systems with time-varying delay and nonlinear perturbations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 187-200.
    2. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    3. Ma, Yuechao & Chen, Hui, 2015. "Reliable finite-time H∞ filtering for discrete time-delay systems with Markovian jump and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 897-915.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Guoliang & Cai, Hongyang & Zhang, Qingling & Yang, Chunyu, 2017. "Stabilization of stochastic delay systems via a disordered controller," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 98-109.
    2. Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous dissipative control design for semi-Markovian jump systems with uncertain probability distribution functions of sojourn-time," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    3. Liang, Hongjing & Zhou, Yu & Ma, Hui & Wu, Qinghui & Yu, Zhandong, 2018. "Distributed-observer-based output synchronization for heterogeneous double-integral networks," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 535-544.
    4. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2023. "Reduced-order filtering for semi-Markovian jump systems against randomly occurring false data injection attacks," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    5. Kong, Chuifeng & Ma, Yuechao & Liu, Deyou, 2019. "Observer-based quantized sliding mode dissipative control for singular semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    6. Pradeep, C. & Cao, Yang & Murugesu, R. & Rakkiyappan, R., 2019. "An event-triggered synchronization of semi-Markov jump neural networks with time-varying delays based on generalized free-weighting-matrix approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 41-56.
    7. Hongqian Lu & Chaoqun Guo & Yue Hu & Wuneng Zhou, 2019. "Event-Triggered Stability Analysis of Semi-Markovian Jump Networked Control System with Actuator Faults and Time-Varying Delay via Bessel–Legendre Inequalities," Complexity, Hindawi, vol. 2019, pages 1-16, October.
    8. Hu, Jun & Zhang, Panpan & Kao, Yonggui & Liu, Hongjian & Chen, Dongyan, 2019. "Sliding mode control for Markovian jump repeated scalar nonlinear systems with packet dropouts: The uncertain occurrence probabilities case," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    9. Ran, Suzhen & Xue, Yanmei & Zheng, Bo-Chao & Wang, Zhenyou, 2017. "Quantized feedback fuzzy sliding mode control design via memory-based strategy," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 283-295.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Tiantian & Shi, Shengli & Ma, Yuechao, 2023. "Asynchronous sliding mode control of continuous-time singular markov jump systems with time-varying delay under event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    2. Yue-Chao Ma & Yang-Fan Liu & Hui Chen, 2017. "Reliable finite-time control of uncertain singular nonlinear Markovian jump systems with bounded transition probabilities and time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(11), pages 2249-2261, August.
    3. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    4. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    5. Obaid Alshammari & Mourad Kchaou & Houssem Jerbi & Sondess Ben Aoun & Víctor Leiva, 2022. "A Fuzzy Design for a Sliding Mode Observer-Based Control Scheme of Takagi-Sugeno Markov Jump Systems under Imperfect Premise Matching with Bio-Economic and Industrial Applications," Mathematics, MDPI, vol. 10(18), pages 1-28, September.
    6. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    7. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    8. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    9. Xi, Fubao, 2004. "Stability of a random diffusion with nonlinear drift," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 273-286, July.
    10. Wang, Guoliang & Li, Zhiqiang & Zhang, Qingling & Yang, Chunyu, 2017. "Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 377-393.
    11. Wang, Guoliang & Cai, Hongyang & Zhang, Qingling & Yang, Chunyu, 2017. "Stabilization of stochastic delay systems via a disordered controller," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 98-109.
    12. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
    13. Guoliang Wang & Bo Feng, 2016. "Finite-Time Stabilization for Discrete-Time Delayed Markovian Jump Systems with Partially Delayed Actuator Saturation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-12, November.
    14. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    15. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2016. "Asynchronous H∞ filtering for 2D discrete Markovian jump systems with sensor failure," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 60-79.
    16. Zhou, Jianping & Sang, Chengyan & Li, Xiao & Fang, Muyun & Wang, Zhen, 2018. "H∞ consensus for nonlinear stochastic multi-agent systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 41-58.
    17. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    18. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    19. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.
    20. You, Surong & Hu, Liangjian & Mao, Wei & Mao, Xuerong, 2015. "Robustly exponential stabilization of hybrid uncertain systems by feedback controls based on discrete-time observations," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 8-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:286:y:2016:i:c:p:72-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.