IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v313y2025ics037837742500201x.html
   My bibliography  Save this article

Relationship of vegetation stand age to soil water dynamics and use in artificial shrublands and grasslands in a semiarid region

Author

Listed:
  • Liu, Chenggong
  • Jia, Xiaoxu
  • Ren, Lidong
  • Zhao, Chunlei
  • Bai, Xiao
  • Shao, Ming’an

Abstract

Vegetation restoration enhances ecosystem services but alters soil hydrological processes in arid and semiarid regions. Understanding vegetation-soil water interactions is crucial for effective water management and sustainable recovery. However, due to the limited long-term monitoring, soil water dynamics and plant water use characteristics at various stages of restored ecosystems remain poorly understood. In this study, we investigated the soil water conditions and water use strategies of typical revegetated shrublands (Caragana korshinskii) and grasslands (Medicago sativa) at 5-, 18-, and 50-yr ages across two growing seasons. Soil water dynamics within 300 cm profile were assessed using the oven-dried method, and plant water use strategies were analyzed using δ²H and δ¹ ⁸O in plant and soil water, and δ¹ ³C in leaves. The results showed a decline in the soil water content from 5 to 18 years in both shrub and grassland ecosystems, with replenishment observed in the 50-yr sites, exceeding that of the other stand ages. The 50-yr C. korshinskii and M. sativa exhibited higher deep soil water utilization with lower intrinsic water use efficiency (iWUE) compared to younger stands. However, both species exhibited consistent shifts in water use strategies across stand ages: during drought years, they relied more on shallow soil water (0–40 cm) with higher iWUE, while in wet years, they used more middle soil water (40–140 cm) with lower iWUE. These findings suggest that soil water conditions and water use characteristics are related to stand ages. After prolonged stand development, soil water deficits were alleviated, and water availability for vegetation increased, potentially improving ecosystem sustainability. Therefore, future management should assess the ecological effects of vegetation restoration over longer developmental stages and implement targeted strategies based on stand ages.

Suggested Citation

  • Liu, Chenggong & Jia, Xiaoxu & Ren, Lidong & Zhao, Chunlei & Bai, Xiao & Shao, Ming’an, 2025. "Relationship of vegetation stand age to soil water dynamics and use in artificial shrublands and grasslands in a semiarid region," Agricultural Water Management, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s037837742500201x
    DOI: 10.1016/j.agwat.2025.109487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742500201X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Scott Jasechko & Zachary D. Sharp & John J. Gibson & S. Jean Birks & Yi Yi & Peter J. Fawcett, 2013. "Terrestrial water fluxes dominated by transpiration," Nature, Nature, vol. 496(7445), pages 347-350, April.
    2. Gonzalo Miguez-Macho & Ying Fan, 2021. "Spatiotemporal origin of soil water taken up by vegetation," Nature, Nature, vol. 598(7882), pages 624-628, October.
    3. Wenzhe Jiao & Lixin Wang & William K. Smith & Qing Chang & Honglang Wang & Paolo D’Odorico, 2021. "Observed increasing water constraint on vegetation growth over the last three decades," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Xiaoming Feng & Bojie Fu & Shilong Piao & Shuai Wang & Philippe Ciais & Zhenzhong Zeng & Yihe Lü & Yuan Zeng & Yue Li & Xiaohui Jiang & Bingfang Wu, 2016. "Revegetation in China’s Loess Plateau is approaching sustainable water resource limits," Nature Climate Change, Nature, vol. 6(11), pages 1019-1022, November.
    5. Tao, Ze & Neil, Eric & Si, Bingcheng, 2021. "Determining deep root water uptake patterns with tree age in the Chinese loess area," Agricultural Water Management, Elsevier, vol. 249(C).
    6. Wang, Jianjun & Wang, Chuantao & Li, Hongchen & Liu, Yanfang & Li, Huijie & Ren, Ruiqi & Si, Bingcheng, 2023. "Rock water use by apple trees affected by physical properties of the underlying weathered rock," Agricultural Water Management, Elsevier, vol. 287(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco J. Muñoz-Gálvez & José I. Querejeta & Cristina Moreno-Gutiérrez & Wei Ren & Enrique G. de la Riva & Iván Prieto, 2025. "Trait coordination and trade-offs constrain the diversity of water use strategies in Mediterranean woody plants," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Lai, Chengguang & Sun, Haowei & Wu, Xushu & Li, Jun & Wang, Zhaoli & Tong, Hongfu & Feng, Jiajin, 2024. "Water availability may not constrain vegetation growth in Northern Hemisphere," Agricultural Water Management, Elsevier, vol. 291(C).
    3. Wantong Li & Mirco Migliavacca & Matthias Forkel & Jasper M. C. Denissen & Markus Reichstein & Hui Yang & Gregory Duveiller & Ulrich Weber & Rene Orth, 2022. "Widespread increasing vegetation sensitivity to soil moisture," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Wang, Jianjun & Wang, Chuantao & Li, Hongchen & Liu, Yanfang & Li, Huijie & Ren, Ruiqi & Si, Bingcheng, 2023. "Rock water use by apple trees affected by physical properties of the underlying weathered rock," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Bai, Huimin & Gong, Zhiqiang & Li, Li & Ma, Junjie & Dogar, Muhammad Mubashar, 2025. "Vegetation coverage variability and its driving factors in the semi-arid to semi-humid transition zone of North China," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    6. Wu, Jie & Feng, Yu & Liang, Lili & He, Xinyue & Zeng, Zhenzhong, 2022. "Assessing evapotranspiration observed from ECOSTRESS using flux measurements in agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Razmavaran, Mohammad Hadi & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2024. "Water footprint and production of rain-fed saffron under different planting methods with ridge plastic mulch and pre-flowering irrigation in a semi-arid region," Agricultural Water Management, Elsevier, vol. 291(C).
    9. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    10. Hamani, Abdoul Kader Mounkaila & Liu, Junming & Si, Zhuanyun & Kpalari, Djifa Fidele & Wang, Guangshuai & Gao, Yang & Ju, Xiaotang, 2024. "The relationship of δD and δ18O in soil water and its implications for soil evaporation across distinct rainfall years in winter wheat field in the North China Plain," Agricultural Water Management, Elsevier, vol. 304(C).
    11. J. Ben-Asher & A. Garcia y Garcia & I. Flitcroft & G. Hoogenboom, 2013. "Effect of atmospheric water vapor on photosynthesis, transpiration and canopy conductance: A case study in corn," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(12), pages 549-555.
    12. Gergana Kuncheva & Atanas Z. Atanasov & Milena Kercheva & Margaritka Filipova & Plamena D. Nikolova & Petar Nikolov & Valentin Vlăduț & Veselin Dochev, 2025. "Carbon, Water, and Light Use Efficiency Under Conservation Practice on Sloped Arable Land," Resources, MDPI, vol. 14(6), pages 1-19, May.
    13. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Huang, Zhongdong & Zhang, Xiaoxian & Ashton, Rhys W. & Hawkesford, Malcom J. & Richard Whalley, W., 2023. "Root phenotyping and root water uptake calculation using soil water contents measured in a winter wheat field," Agricultural Water Management, Elsevier, vol. 290(C).
    15. Heinen, Marius & Mulder, Martin & van Dam, Jos & Bartholomeus, Ruud & de Jong van Lier, Quirijn & de Wit, Janine & de Wit, Allard & Hack - ten Broeke, Mirjam, 2024. "SWAP 50 years: Advances in modelling soil-water-atmosphere-plant interactions," Agricultural Water Management, Elsevier, vol. 298(C).
    16. Cheng Zhang & Chuansen Wu & Zedong Peng & Shengyang Kuai & Shanghong Zhang, 2022. "Synergistic Effects of Changes in Climate and Vegetation on Basin Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3265-3281, July.
    17. Zhi, Feng & Zhang, Jiquan & Bao, Yuhai & Bao, Yulong & Dong, Zhenhua & Tong, Zhijun & Liu, Xingpeng, 2024. "Assessment of waterlogging hazard during maize growth stage in the Songliao plain based on daily scale SPEI and SMAI," Agricultural Water Management, Elsevier, vol. 304(C).
    18. Chen, Lu & Luo, Yong & Tang, Jialiang & Zhang, Xifeng & Liu, Haowen & Cui, Junfang & Zheng, Jing & Dong, Xiaoming, 2024. "Determination of optimum solum thickness of sloping cropland for maize plantation in an Entisol based on water use strategy and plant traits," Agricultural Water Management, Elsevier, vol. 299(C).
    19. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    20. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s037837742500201x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.