IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001544.html
   My bibliography  Save this article

Evaluating the impact of floating spheres on evaporation reduction and water salinity control in reservoirs

Author

Listed:
  • Hao, Guo-chen
  • Shi, Ke-Bin
  • Han, Ke-wu

Abstract

The construction of simple reservoirs in arid regions helps meet the water demands for agricultural irrigation, industry, and domestic use, while also alleviating local water shortages and related issues. However, environmental concerns associated with reservoir development are becoming more evident. For instance, the stored water is gradually becoming saline. Studies suggest that reducing water evaporation over extended periods can effectively lower the salt concentration in the water. Currently, there is limited research on salt migration in reservoir water when covered with anti-evaporation materials. Given the potential impact of these materials on the water environment and hydrodynamic conditions, this study seeks to examine the spatiotemporal distribution patterns of reservoir mineralization under such covering. To this end, laboratory and field experiments were conducted to analyze the impact of covering the water surface with floating high-density polyethylene spheres to reduce evaporation and its effect on water salinity. These experiments included monitoring water temperature, dissolved oxygen, pH, sediment resuspension, and water conductivity, as well as calculating the contribution of sediment release and evapotranspiration to the increase in salinity concentration within the water column. This study investigates the role of floating high-density polyethylene (HDPE) spheres in reducing reservoir evaporation and mitigating water salinity. Laboratory and field experiments assessed the effects of different coverage levels (0 %-74.98 %) on evaporation rates, sediment resuspension, and water chemistry. The findings indicate that covering 74.98 % of the reservoir surface led to a 28.97 % reduction in salinity (p < 0.05) over one irrigation cycle. Evaporation inhibition varied from 13.56 % to 60.19 %, depending on coverage. However, floating spheres exhibited reduced effectiveness at high wind speeds (>10.7 m/s), highlighting the need for additional containment strategies. Future research should explore long-term durability, ecological impact, and cost-effectiveness of large-scale deployment.

Suggested Citation

  • Hao, Guo-chen & Shi, Ke-Bin & Han, Ke-wu, 2025. "Evaluating the impact of floating spheres on evaporation reduction and water salinity control in reservoirs," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001544
    DOI: 10.1016/j.agwat.2025.109440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.