IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v309y2025ics0378377425000356.html
   My bibliography  Save this article

Improved estimation of stomatal conductance by combining high-throughput plant phenotyping data and weather variables through machine learning

Author

Listed:
  • Zhang, Junxiao
  • Thapa, Kantilata
  • Bai, Geng (Frank)
  • Ge, Yufeng

Abstract

Stomatal conductance (gs) quantifies the rate of exchange of carbon dioxide for photosynthesis and water vapor for transpiration between plant leaves and the atmosphere. gs is usually measured by handheld devices like porometers, and readings are manually taken in the field, which is time-consuming and labor-intensive. In this study, we investigated the use of high-throughput phenotyping (HTP) data combined with weather data to estimate gs through machine-learning (ML) modeling. The experiment was conducted in a research field equipped with an HTP platform in 2020 and 2021 involving maize, sorghum, soybean, sunflower, and winter wheat. Weather variables including dew point temperature, wind speed, air temperature, solar radiation, and relative humidity were collected by an onsite weather station. Plot-level canopy temperature, soil temperature, and seven vegetation indices were acquired using a thermal infrared camera, a multispectral camera, and a visible near-infrared spectrometer integrated on the HTP platform. Three supervised ML methods (Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), and Support Vector Regression (SVR)) were employed to train the estimation models for gs, and model performance was evaluated by Coefficient of Determination (R2) and Root Mean Squared Error (RMSE). The result showed that RFR and SVR outperformed PLSR in gs modeling. The RFR model achieved R2 of 0.63 and RMSE of 0.16 mol m−2·s−1 with the combination of phenotyping data and weather data. It outperformed the model using only the weather data (R2=0.35 and RMSE=0.21 mol m−2·s−1), or the model using only the phenotyping data (R2=0.46 and RMSE=0.19 mol m−2·s−1). This result suggested that high-throughput plant phenotyping data effectively complement weather data in estimating gs rapidly and non-destructively through ML. With the wide adoption of HTP technologies in aerial and ground-based platforms, this research provides a practical framework to estimate gs at large scale for crop breeding and irrigation management.

Suggested Citation

  • Zhang, Junxiao & Thapa, Kantilata & Bai, Geng (Frank) & Ge, Yufeng, 2025. "Improved estimation of stomatal conductance by combining high-throughput plant phenotyping data and weather variables through machine learning," Agricultural Water Management, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000356
    DOI: 10.1016/j.agwat.2025.109321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chamara, Nipuna & Islam, Md Didarul & Bai, Geng (Frank) & Shi, Yeyin & Ge, Yufeng, 2022. "Ag-IoT for crop and environment monitoring: Past, present, and future," Agricultural Systems, Elsevier, vol. 203(C).
    2. Ekaansh Khosla & Ramesh Dharavath & Rashmi Priya, 2020. "Crop yield prediction using aggregated rainfall-based modular artificial neural networks and support vector regression," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5687-5708, August.
    3. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi & Mohammad Mehdi Moghimi, 2023. "Determining the most appropriate drought index using the random forest algorithm with an emphasis on agricultural drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 923-946, January.
    5. Colaizzi, Paul D. & O’Shaughnessy, Susan A. & Evett, Steve R. & Mounce, Ryan B., 2017. "Crop evapotranspiration calculation using infrared thermometers aboard center pivots," Agricultural Water Management, Elsevier, vol. 187(C), pages 173-189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    3. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    4. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    5. Hadeel E. Khairan & Salah L. Zubaidi & Mustafa Al-Mukhtar & Anmar Dulaimi & Hussein Al-Bugharbee & Furat A. Al-Faraj & Hussein Mohammed Ridha, 2023. "Assessing the Potential of Hybrid-Based Metaheuristic Algorithms Integrated with ANNs for Accurate Reference Evapotranspiration Forecasting," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    6. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Xiaochen Yang & Kai Liu & Xiaobo Liu & Fei Dong & Aiping Huang & Bing Ma & Yang Lei & Zhi Jiang, 2025. "Water Quality Prediction Method Coupling Mechanism Model and Machine Learning for Water Diversion Projects with a Lack of Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(7), pages 3015-3030, May.
    8. Farshad Ahmadi & Saeid Mehdizadeh & Babak Mohammadi, 2021. "Development of Bio-Inspired- and Wavelet-Based Hybrid Models for Reconnaissance Drought Index Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4127-4147, September.
    9. Priya Brata Bhoi & Veeresh S. Wali & Deepak Kumar Swain & Kalpana Sharma & Akash Kumar Bhoi & Manlio Bacco & Paolo Barsocchi, 2021. "Input Use Efficiency Management for Paddy Production Systems in India: A Machine Learning Approach," Agriculture, MDPI, vol. 11(9), pages 1-27, August.
    10. Dong-Her Shih & Ching-Hsien Liao & Ting-Wei Wu & Huan-Shuo Chang & Ming-Hung Shih, 2022. "WSI: A New Early Warning Water Survival Index for the Domestic Water Demand," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
    11. Wu, Menglong & Xiong, Jiajie & Li, Ruoyu & Dong, Aihong & Lv, Chang & Sun, Dan & Abdelghany, Ahmed Elsayed & Zhang, Qian & Wang, Yaqiong & Siddique, Kadambot H.M. & Niu, Wenquan, 2024. "Precision forecasting of fertilizer components’ concentrations in mixed variable-rate fertigation through machine learning," Agricultural Water Management, Elsevier, vol. 298(C).
    12. Milan Gocić & Mohammad Arab Amiri, 2021. "Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1913-1926, April.
    13. Capurro, Maria C. & Ham, Jay M. & Kluitenberg, Gerard J. & Comas, Louise & Andales, Allan A., 2024. "A novel sap flow system to measure maize transpiration using a heat pulse method," Agricultural Water Management, Elsevier, vol. 301(C).
    14. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Che-Hao Chang & Jason Lin & Jia-Wei Chang & Yu-Shun Huang & Ming-Hsin Lai & Yen-Jen Chang, 2024. "Hybrid Deep Neural Networks with Multi-Tasking for Rice Yield Prediction Using Remote Sensing Data," Agriculture, MDPI, vol. 14(4), pages 1-21, March.
    16. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    17. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
    18. Ahmadi, Farshad & Mehdizadeh, Saeid & Mohammadi, Babak & Pham, Quoc Bao & DOAN, Thi Ngoc Canh & Vo, Ngoc Duong, 2021. "Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 244(C).
    19. Liangfeng Zou & Yuanyuan Zha & Yuqing Diao & Chi Tang & Wenquan Gu & Dongguo Shao, 2023. "Coupling the Causal Inference and Informer Networks for Short-term Forecasting in Irrigation Water Usage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 427-449, January.
    20. Nandan, Rohit & Woo, Dong K. & Kumar, Praveen & Adinarayana, J., 2021. "Impact of irrigation scheduling methods on corn yield under climate change," Agricultural Water Management, Elsevier, vol. 255(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.