IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v308y2025ics037837742500023x.html
   My bibliography  Save this article

Effects of management of plastic and straw mulching management on crop yield and soil salinity in saline-alkaline soils of China: A meta-analysis

Author

Listed:
  • Song, Ying
  • Sun, Jineng
  • Cai, Mingjun
  • Li, Jinyu
  • Bi, Meizhen
  • Gao, Mingxiu

Abstract

Improving saline-alkali soils is crucial for sustainable agricultural development. Ground cover techniques, such as mulching, can mitigate soil salinity, but their effects on crop yields and soil salinity remains controversial. Moreover, it remains unclear how these effects vary with climatic, edaphic, and agronomic management factors such as tillage methods, irrigation types, nitrogen application rates, and mulching duration. To address this gap, we conducted a meta-analysis to assess the effects of plastic film mulch (PM), straw mulch (SM), and their combination (SM+PM) on crop yields and soil salinity. Results showed that PM, SM, and SM+PM increased crop yields by 33.7 %, 45.2 %, and 14.5 %, respectively, while reducing soil salinity by 13.9 %, 22.6 %, and 12.7 % compared to no mulch. These improvements were influenced by climate, edaphic, and agronomic factors. Different cover measures significantly increased crop yield and reduced soil salinity under varying mean annual temperature and mean annual precipitation < 300 mm conditions. Regarding soil conditions, PM and SM+PM did not significantly reduce soil salinity under conditions of clay, SBD (soil bulk density) < 1.45 g·cm-³ , SBD > 1.55 g·cm-³ , mild soil salinization, and saline soils. Regarding agronomic practices, PM showed the greater yield improvements under no-tillage, rotary tillage, and deep tillage systems, while SM effectively reduced soil salinity. Notably, the impact of these mulching practices on both crop yield and soil salinity became insignificant when the experimental duration exceeded 2 years. For optimal results, black plastic mulch should be used to cover the entire ground surface when employing PM, while SM should be applied as surface mulch. This research provides valuable insights for selecting appropriate mulching strategies to improve saline-alkali soils and promote sustainable agricultural practices.

Suggested Citation

  • Song, Ying & Sun, Jineng & Cai, Mingjun & Li, Jinyu & Bi, Meizhen & Gao, Mingxiu, 2025. "Effects of management of plastic and straw mulching management on crop yield and soil salinity in saline-alkaline soils of China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s037837742500023x
    DOI: 10.1016/j.agwat.2025.109309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742500023X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Xiaoliang & Huang, Tiantian & Lu, Chen & Dang, Pengfei & Zhang, Miaomiao & Guan, Xiao-kang & Wen, Peng-fei & Wang, Tong-Chao & Chen, Yinglong & Siddique, Kadambot H.M., 2021. "Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Miao, Junxia & Li, Xiaobin, 2021. "Different mulching materials influence the reclamation of saline soil and growth of the Lycium barbarum L. under drip-irrigation in saline wasteland in northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    4. Zhu, Wei & Yang, Jingsong & Yao, Rongjiang & Xie, Wenping & Wang, Xiangping & Liu, Yuqian, 2022. "Soil water-salt control and yield improvement under the effect of compound control in saline soil of the Yellow River Delta, China," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Paul, Priya Lal Chandra & Bell, Richard W & Barrett-Lennard, Edward G. & Kabir, Enamul, 2020. "Straw mulch and irrigation affect solute potential and sunflower yield in a heavy textured soil in the Ganges Delta," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Pang, Huan-Cheng & Li, Yu-Yi & Yang, Jin-Song & Liang, Ye-Sen, 2010. "Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions," Agricultural Water Management, Elsevier, vol. 97(12), pages 1971-1977, November.
    7. Huang, Yilong & Chen, Liding & Fu, Bojie & Huang, Zhilin & Gong, Jie, 2005. "The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects," Agricultural Water Management, Elsevier, vol. 72(3), pages 209-222, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jingsong & Li, Jing & Feng, Xiaohui & Guo, Kai & Liu, Xiaojing & Fan, Fengcui & Liu, Shengyao & Jia, Songnan, 2024. "Straw incorporation: A more effective coastal saline land reclamation approach to boost sunflower yield than straw mulching or burial," Agricultural Water Management, Elsevier, vol. 305(C).
    2. Zhu, Wei & Yang, Jingsong & Yao, Rongjiang & Xie, Wenping & Wang, Xiangping & Liu, Yuqian, 2022. "Soil water-salt control and yield improvement under the effect of compound control in saline soil of the Yellow River Delta, China," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Wei Zhu & Shiguo Gu & Rui Jiang & Xin Zhang & Ryusuke Hatano, 2024. "Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China," Agriculture, MDPI, vol. 14(8), pages 1-25, July.
    4. Zhang, Lingchun & Meng, Fanchao & Zhang, Xinyue & Gao, Qiang & Yan, Li, 2024. "Optimum management strategy for improving maize water productivity and partial factor productivity for nitrogen in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 303(C).
    5. Linlin Ye & Yuanxiao Xu & Guofeng Zhu & Wenhao Zhang & Yinying Jiao, 2023. "Effects of Different Mulch Types on Farmland Soil Moisture in an Artificial Oasis Area," Land, MDPI, vol. 13(1), pages 1-17, December.
    6. Kaveney, Brooke & Barrett-Lennard, Edward & Chau Minh, Khoi & Dang Duy, Minh & Nguyen Thi, Kim Phuong & Kristiansen, Paul & Orgill, Susan & Stewart-Koster, Ben & Condon, Jason, 2023. "Inland dry season saline intrusion in the Vietnamese Mekong River Delta is driving the identification and implementation of alternative crops to rice," Agricultural Systems, Elsevier, vol. 207(C).
    7. Wang, Wangtian & Ma, Li & Wu, Junyan & Sun, Wancang & Ali, Shahzad & Yang, Gang & Pu, Yuanyuan & Liu, Lijun & Fang, Yan, 2023. "Cultivation practices with various mulching materials to regulate chlorophyll fluorescence, cuticular wax, and rapeseed productivity under semi-arid regions," Agricultural Water Management, Elsevier, vol. 288(C).
    8. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    9. Li-fang Wang & Juan Chen & Zhou-ping Shangguan, 2015. "Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    10. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    11. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    12. Nazemi Rafi, Zahra & Kazemi, Fatemeh & Tehranifar, Ali, 2019. "Effects of various irrigation regimes on water use efficiency and visual quality of some ornamental herbaceous plants in the field," Agricultural Water Management, Elsevier, vol. 212(C), pages 78-87.
    13. Li, Cheng & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Zhang, Tibin & Dong, Qin’ge & Feng, Hao & Zhang, Wenxin & Siddique, Kadambot H.M., 2023. "Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area," Agricultural Water Management, Elsevier, vol. 280(C).
    14. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    15. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    16. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    17. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    18. Marcela Taušová & Katarína Čulková & Dušan Kudelas & Ľubomíra Gabániová & Ján Koščo & Ibrahim Mehana, 2022. "Evaluation of Water Resources through Efficiency Index and Water Productivity in EU," Energies, MDPI, vol. 15(23), pages 1-11, December.
    19. Álvarez, S. & Gómez-Bellot, M.J. & Acosta-Motos, J.R. & Sánchez-Blanco, M.J., 2019. "Application of deficit irrigation in Phillyrea angustifolia for landscaping purposes," Agricultural Water Management, Elsevier, vol. 218(C), pages 193-202.
    20. Su, Ziyou & Zhang, Jinsong & Wu, Wenliang & Cai, Dianxiong & Lv, Junjie & Jiang, Guanghui & Huang, Jian & Gao, Jun & Hartmann, Roger & Gabriels, Donald, 2007. "Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 87(3), pages 307-314, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s037837742500023x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.