IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424006024.html
   My bibliography  Save this article

An interval bilateral regulation framework of water resources supply and demand in irrigation area under water sources uncertainty

Author

Listed:
  • Shu, Zhan
  • Kang, Yan
  • Gao, Ying
  • Shi, Xuemai
  • Li, Wanxue
  • Zhang, Shuo
  • Song, Songbai
  • Li, Lingjie

Abstract

Climate change and human activities have diminished the stability of the water resources system, leading to multiple uncertainties in the prediction of incoming water, reservoir operation optimization on the water supply side, and adaptive adjustments of the water-use structure on the water demand side. In response to quantify uncertainty and match the water supply-demand in water resources regulation, we developed a novel "ensemble inflow prediction—reserve operation strategy—interval bilateral regulation—water supply risk analysis" framework by coupling the interval prediction methods of incoming water, the bilayer model of reservoir multi-objective optimal operation, and the optimization model of planting structure in irrigation area. In the proposed framework, the NGBoost and Bootstrap methods were employed to assess the uncertainty of runoff and groundwater based on the varying sample sizes. A bilayer model of reservoir multi-objective operation was proposed under uncertain runoff to optimize reservoir operation rules for different sequences of reservoir water storage and supply. An interval bilateral regulation model of water supply and demand was developed to optimize crop planting structures for adapting to uncertain water supply scenarios. We applied this framework to the Baojixia Irrigation Area (BIA) of Northwest China. The results show that the NGboost model achieves satisfactory prediction results for the monthly runoff. The reservoir group, following the sequence of water storage [II, III, IV, V, VI] and the sequence of water supply [VI, V, IV, III, II], can reduce water supply risks under uncertain runoff. Compared to the current scenario, annual average economic benefit has been increased by 19.6 %-24.9 %, irrigation water has been reduced by 10.3 %-12.5 %, and water shortage rates have been reduced to 2.1 %-2.9 % under water supply scenarios A-W, A-N, A-D, and A-E in the interval bilateral regulation framework. This study provides a new perspective to address the interaction of water supply-demand and multiple uncertainties.

Suggested Citation

  • Shu, Zhan & Kang, Yan & Gao, Ying & Shi, Xuemai & Li, Wanxue & Zhang, Shuo & Song, Songbai & Li, Lingjie, 2025. "An interval bilateral regulation framework of water resources supply and demand in irrigation area under water sources uncertainty," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424006024
    DOI: 10.1016/j.agwat.2024.109266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424006024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. He, Li & Du, Yu & Wu, Shuang & Zhang, Zhaolong, 2021. "Evaluation of the agricultural water resource carrying capacity and optimization of a planting-raising structure," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Wang, Daobo & Li, Fusheng & Nong, Mengling, 2017. "Response of yield and water use efficiency to different irrigation levels at different growth stages of Kenaf and crop water production function," Agricultural Water Management, Elsevier, vol. 179(C), pages 177-183.
    3. Luo, Jianmei & Zhang, Hongmei & Qi, Yongqing & Pei, Hongwei & Shen, Yanjun, 2022. "Balancing water and food by optimizing the planting structure in the Beijing–Tianjin–Hebei region, China," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Chen, Yingshan & Fu, Qiang & Singh, Vijay P. & Ji, Yi & Li, Mo & Wang, Yijia, 2023. "Optimization of agricultural soil and water resources under fuzzy and random uncertainties: Synergy and trade-off between equity-based economic benefits, nonpoint pollution and water use efficiency," Agricultural Water Management, Elsevier, vol. 281(C).
    5. Xu Wu & Xiaojing Shen & Chuanjiang Wei & Xinmin Xie & Jianshe Li, 2022. "Reservoir Operation Sequence- and Equity Principle-Based Multi-Objective Ecological Operation of Reservoir Group: A Case Study in a Basin of Northeast China," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    6. Shirmohammadi-Aliakbarkhani, Zahra & Saberali, Seyed Farhad, 2020. "Evaluating of eight evapotranspiration estimation methods in arid regions of Iran," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    8. Dang, T. & Pedroso, R. & Laux, P. & Kunstmann, H., 2018. "Development of an integrated hydrological-irrigation optimization modeling system for a typical rice irrigation scheme in Central Vietnam," Agricultural Water Management, Elsevier, vol. 208(C), pages 193-203.
    9. Sapino, Francesco & Pérez-Blanco, C. Dionisio & Gutiérrez-Martín, Carlos & García-Prats, Alberto & Pulido-Velazquez, Manuel, 2022. "Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Qianzuo & Jiang, Yanan & Wang, Qianyu & Xu, Fenfang, 2024. "A distributed simulation-optimization framework for many-objective water resources allocation in canal-well combined irrigation district under diverse supply and demand scenarios," Agricultural Water Management, Elsevier, vol. 305(C).
    2. Ding, Beibei & Li, Yuqian & Marek, Gary W. & Ge, Jianing & Han, Yiwen & Hu, Kelin & Yan, Tiezhu & Ale, Srinivasulu & Zhang, Guilong & Srinivasan, Raghavan & Chen, Yong, 2024. "Impacts of land use changes on water conservation in the Songhuajiang River basin in Northeast China using the SWAT model," Agricultural Water Management, Elsevier, vol. 306(C).
    3. Chao Zhang & Ruifa Hu, 2022. "Adoption of Direct Seeding, Yield and Fertilizer Use in Rice Production: Empirical Evidence from China," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    4. Li, Lu & Zhou, Yan & Li, Mo & Cao, Kaihua & Tao, Yanhuai & Liu, Yangdachuan, 2022. "Integrated modelling for cropping pattern optimization and planning considering the synergy of water resources-society-economy-ecology-environment system," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Lan Mu & Chunxia Luo & Zongjia Tan & Binglin Zhang & Xiaojuan Qu, 2023. "Assessing the Impact of Different Agricultural Irrigation Charging Methods on Sustainable Agricultural Production," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    6. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    7. Jinxia Lv & Chun Dong & Qin Yan & Huayan Liu & Liyong Fu & Xuemei Wei, 2025. "Decreasing Impact of Intra-City Disparities on Ecosystem Services During Rapid Urbanization in the Beijing–Tianjin–Hebei Urban Agglomeration," Land, MDPI, vol. 14(6), pages 1-17, June.
    8. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    9. Yansong Zhang & Yujie Wei & Yu Mao, 2023. "Sustainability Assessment of Regional Water Resources in China Based on DPSIR Model," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    10. Guo, Xin, 2025. "Assessing the impact of the Central Line Project of South-to-North Water Diversion on urban economic resilience: Evidence from prefecture-level cities in Henan and Hebei provinces," International Review of Economics & Finance, Elsevier, vol. 98(C).
    11. Cai, Siyang & Zuo, Depeng & Wang, Huixiao & Xu, Zongxue & Wang, GuoQing & Yang, Hong, 2023. "Assessment of agricultural drought based on multi-source remote sensing data in a major grain producing area of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Bennie Grové & Johannes Jacobus Bezuidenhout & Nicolette Matthews, 2023. "Farm-level Hydroeconomic Analysis of Alternative Water Tariff Charges Using a Hybrid Solution Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4679-4692, September.
    13. Yanbin Li & Yuhang Han & Hongxing Li & Kai Feng, 2024. "Understanding Agricultural Water Consumption Trends in Henan Province: A Spatio-Temporal and Determinant Analysis Using Geospatial Models," Agriculture, MDPI, vol. 14(12), pages 1-20, December.
    14. Yizhen Jia & Xiaodong Yan, 2024. "Multi-Objective Optimization of the Planting Industry in Jiangsu Province and Analysis of Its “Water-Energy-Carbon” Characteristics," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    15. Yi Lou & Guanyi Yin & Yue Xin & Shuai Xie & Guanghao Li & Shuang Liu & Xiaoming Wang, 2021. "Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China," Land, MDPI, vol. 10(1), pages 1-27, January.
    16. Huanyu Chang & Yong Zhao & Yongqiang Cao & Guohua He & Qingming Wang & Rong Liu & He Ren & Jiaqi Yao & Wei Li, 2025. "Evaluating Sustainability of Water–Energy–Food–Ecosystems Nexus in Water-Scarce Regions via Coupled Simulation Model," Agriculture, MDPI, vol. 15(12), pages 1-38, June.
    17. Li, Guifang & Ma, Dongdong, 2025. "Can a tiered water price policy improve the technical efficiency of crop irrigation for maize in the Heihe River Basin in Northwest China?," Agricultural Water Management, Elsevier, vol. 309(C).
    18. Xu, Ye & Tan, Junyuan & Wang, Xu & Li, Wei & He, Xing & Hu, Xiaoguang & Fan, Yurui, 2022. "Synergetic management of water-energy-food nexus system and GHG emissions under multiple uncertainties: An inexact fractional fuzzy chance constraint programming method," Agricultural Water Management, Elsevier, vol. 262(C).
    19. Quancheng Zhou & Hanze Tan & Zezhong Zhang & Weijie Zhang & Fei Wang & Jihong Qu & Yingjie Wu & Wenjun Wang & Yong Liu & Dequan Zhang & Yongsheng Wang & Kai Feng, 2024. "Investigation of the Coupling and Coordination Relationship of Water–Energy–Food–Ecology and the Driving Mechanism in Dalad Banner," Sustainability, MDPI, vol. 16(12), pages 1-23, June.
    20. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424006024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.