IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005675.html
   My bibliography  Save this article

Capturing the extent of climate's dynamic effects on runoff and nutrient yields across short- and long-term scales

Author

Listed:
  • Chang, Di
  • Li, Shuo

Abstract

Climate change affects hydrology and water quality. Quantifying climate's dynamic effects on runoff and nutrient yields is critical for advancing climate–adaptive watershed management. This study first constructed the Soil and Water Assessment Tool (SWAT) for a large-scale agricultural watershed in southern China, using multi–site zoning calibration approach and the Sequential Uncertainty Fitting algorithm (SUFI-2). The model performance was evaluated using the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and Kling-Gupta efficiency (KGE). Then, a process-based factor-control quantification protocol was developed in SWAT model to capture how climate change drives runoff and nutrient yield variations from a physical process perspective, offering a distinct approach from empirical statistical analyses. Results indicated that multi-site zoning calibration procedure can effectively enhance hydrological modeling accuracy in large, complex watersheds as accounting for the hydrological heterogeneity within watershed. Constructed SWAT explained 71–86 % of runoff variability and 67–89 % and 77–91 % of total nitrogen (TN) and total phosphorus (TP) yields' variations, respectively. For single–factor effects, precipitation's facilitation on runoff and nutrient yields outweighed other factors regardless of time–scale, inducing 24.2 %, 29.6 %, and 16.8 % variations of runoff, TN, and TP yields from 1990 to 2020. In contrast, temperature restrained runoff and nutrient outputs over long–term, while exhibiting considerable variability across short–term periods. For coupled effects, long–term temperature variation suppressed precipitation's promotion on runoff and TP outputs but enhanced its impact on TN outputs. Additionally, wind speed and radiation amplified precipitation's effects. Conversely, minimum and maximum temperature had the most pronounced negative combined impacts on runoff, TN, and TP yields, contributing –24.4 %, –28 %, and –21 %, respectively. Irrespective of time–scale and periods, precipitation has stronger impact on TN than TP. Moreover, TN outputs are more sensitive to comprehensive meteorological variability compared to TP. Hydrological and water quality responses to climate change varied dramatically and increase over decades. The spatial pattern of change contributions shifted across periods. The findings improved the understanding for hydrological and water quality responses to climate change in large-scale complex watershed.

Suggested Citation

  • Chang, Di & Li, Shuo, 2025. "Capturing the extent of climate's dynamic effects on runoff and nutrient yields across short- and long-term scales," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005675
    DOI: 10.1016/j.agwat.2024.109231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Lei & Liu, Xia & Chen, Junlai & Li, Jinfeng & Yu, Yang & Ma, Xiaoyi, 2022. "Efficiency assessment of best management practices in sediment reduction by investigating cost-effective tradeoffs," Agricultural Water Management, Elsevier, vol. 265(C).
    2. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    3. Plunge, Svajunas & Gudas, Mindaugas & Povilaitis, Arvydas, 2022. "Effectiveness of best management practices for non-point source agricultural water pollution control with changing climate – Lithuania’s case," Agricultural Water Management, Elsevier, vol. 267(C).
    4. Grusson, Youen & Wesström, Ingrid & Svedberg, Elina & Joel, Abraham, 2021. "Influence of climate change on water partitioning in agricultural watersheds: Examples from Sweden," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Mohr, Lukas & Burg, Vanessa & Thees, Oliver & Trutnevyte, Evelina, 2019. "Spatial hot spots and clusters of bioenergy combined with socio-economic analysis in Switzerland," Renewable Energy, Elsevier, vol. 140(C), pages 840-851.
    6. Ahn, Sora & Abudu, Shalamu & Sheng, Zhuping & Mirchi, Ali, 2018. "Hydrologic impacts of drought-adaptive agricultural water management in a semi-arid river basin: Case of Rincon Valley, New Mexico," Agricultural Water Management, Elsevier, vol. 209(C), pages 206-218.
    7. Zimmer, Dana & Kahle, Petra & Baum, Christel, 2016. "Loss of soil phosphorus by tile drains during storm events," Agricultural Water Management, Elsevier, vol. 167(C), pages 21-28.
    8. Shrestha, Manoj Kumar & Recknagel, Friedrich & Frizenschaf, Jacqueline & Meyer, Wayne, 2016. "Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia," Agricultural Water Management, Elsevier, vol. 175(C), pages 61-71.
    9. Panpan Ji & Jianhui Chen & Ruijin Chen & Jianbao Liu & Chaoqing Yu & Fahu Chen, 2024. "Nitrogen and phosphorus trends in lake sediments of China may diverge," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Tingting & Jiang, Yanan & Zhang, Xun & Chen, Yanan & Ma, Qihao & Hou, Jianzhe & Wang, Yakun & Tong, Bingwei, 2025. "Evaluation of best management practices for controlling water pollution in an arid irrigation district," Agricultural Water Management, Elsevier, vol. 312(C).
    2. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    3. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    5. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    6. Florian Rabitz & Alin Olteanu & Jurgita Jurkevičienė & Agnė Budžytė, 2021. "A topic network analysis of the system turn in the environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2107-2140, March.
    7. Wang, Xinzhi & Lin, Qingxia & Wu, Zhiyong & Zhang, Yuliang & Li, Changwen & Liu, Ji & Zhang, Shinan & Li, Songyu, 2025. "Agricultural GDP exposure to drought and its machine learning-based prediction in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 307(C).
    8. Reza Jamshidi & Deirdre Dragovich, 2022. "Water Balance Uncertainty of a Hydrologic Model to Lengthy Drought and Storm Events in Managed Forest Catchments, Eastern Australia," Land, MDPI, vol. 12(1), pages 1-20, December.
    9. Chengpeng Zhang & Yu Ye & Xiuqi Fang & Hansunbai Li & Xue Zheng, 2020. "Coincidence Analysis of the Cropland Distribution of Multi-Sets of Global Land Cover Products," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    10. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    11. Jie Zhang & Jia Liu & Guilong Li & Meng Wu, 2024. "Screening Potential Nitrification Inhibitors through a Structure–Activity Relationship Study—The Case of Cinnamic Acid Derivatives," Sustainability, MDPI, vol. 16(13), pages 1-10, July.
    12. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    13. L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
    14. Yusen Chen & Shihang Zhang & Yongdong Wang, 2022. "Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia," Land, MDPI, vol. 11(10), pages 1-12, October.
    15. Charles A. Taylor & Geoffrey Heal, 2021. "Fertilizer and Algal Blooms: A Satellite Approach to Assessing Water Quality," NBER Chapters, in: Risks in Agricultural Supply Chains, pages 83-105, National Bureau of Economic Research, Inc.
    16. Li, Hongying & Zhu, Ningyuan & Qiao, Jun & Tang, Jun, 2024. "Evaluating the long-term effects of best management practices on pollution reduction and soil quality improvement in sloping farmland of the Three Gorges Reservoir area," Agricultural Water Management, Elsevier, vol. 297(C).
    17. Stürmer, B. & Leiers, D. & Anspach, V. & Brügging, E. & Scharfy, D. & Wissel, T., 2021. "Agricultural biogas production: A regional comparison of technical parameters," Renewable Energy, Elsevier, vol. 164(C), pages 171-182.
    18. Chen, Minpeng & Sun, Fu & Shindo, Junko, 2016. "China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 10-27.
    19. Danica L. Lombardozzi & William R. Wieder & Gretchen Keppel-Aleks & Jiameng Lai & Zhenqi Luo & Ying Sun & Isla R. Simpson & David M. Lawrence & Gordon B. Bonan & Xin Lin & Charles D. Koven & Pierre Fr, 2025. "Agricultural fertilization significantly enhances amplitude of land-atmosphere CO2 exchange," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Rong Zhang & Chuan Li & Huilin Cui & Yanbo Wang & Shaoce Zhang & Pei Li & Yue Hou & Ying Guo & Guojin Liang & Zhaodong Huang & Chao Peng & Chunyi Zhi, 2023. "Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.