IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28345-1.html
   My bibliography  Save this article

Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink

Author

Listed:
  • Geshere Abdisa Gurmesa

    (Chinese Academy of Sciences)

  • Ang Wang

    (Chinese Academy of Sciences
    Chinese Academy of Science
    Key Laboratory of Isotope Techniques and Applications)

  • Shanlong Li

    (Chinese Academy of Sciences
    Jilin Academy of Agricultural Science)

  • Shushi Peng

    (Peking University)

  • Wim Vries

    (Wageningen University and Research, Environmental Systems Analysis Group)

  • Per Gundersen

    (University of Copenhagen)

  • Philippe Ciais

    (LSCE (CEA CNRS UVSQ UPSaclay) Centre d’Etudes Orme des Merisiers
    Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute)

  • Oliver L. Phillips

    (University of Leeds)

  • Erik A. Hobbie

    (University of New Hampshire)

  • Weixing Zhu

    (Binghamton University, The State University of New York)

  • Knute Nadelhoffer

    (University of Michigan)

  • Yi Xi

    (Peking University)

  • Edith Bai

    (Northeast Normal University)

  • Tao Sun

    (Chinese Academy of Sciences)

  • Dexiang Chen

    (Chinese Academy of Forestry)

  • Wenjun Zhou

    (Chinese Academy of Sciences)

  • Yiping Zhang

    (Chinese Academy of Sciences)

  • Yingrong Guo

    (Jiangxi Provincial Bureau of Forestry)

  • Jiaojun Zhu

    (Chinese Academy of Sciences
    Chinese Academy of Science)

  • Lei Duan

    (Tsinghua University)

  • Dejun Li

    (Chinese Academy of Sciences)

  • Keisuke Koba

    (Kyoto University)

  • Enzai Du

    (Beijing Normal University)

  • Guoyi Zhou

    (Nanjing University of Information Science and Technology)

  • Xingguo Han

    (Chinese Academy of Sciences)

  • Shijie Han

    (Henan University)

  • Yunting Fang

    (Chinese Academy of Sciences
    Chinese Academy of Science
    Key Laboratory of Isotope Techniques and Applications)

Abstract

The impacts of enhanced nitrogen (N) deposition on the global forest carbon (C) sink and other ecosystem services may depend on whether N is deposited in reduced (mainly as ammonium) or oxidized forms (mainly as nitrate) and the subsequent fate of each. However, the fates of the two key reactive N forms and their contributions to forest C sinks are unclear. Here, we analyze results from 13 ecosystem-scale paired 15N-labelling experiments in temperate, subtropical, and tropical forests. Results show that total ecosystem N retention is similar for ammonium and nitrate, but plants take up more labelled nitrate ( $${20}_{15}^{25}$$ 20 15 25 %) ( $${{{{{{\rm{mean}}}}}}}_{{{{{{\rm{minimum}}}}}}}^{{{{{{\rm{maximum}}}}}}}$$ mean minimum maximum ) than ammonium ( $${12}_{8}^{16}$$ 12 8 16 %) while soils retain more ammonium ( $${57}_{49}^{65}$$ 57 49 65 %) than nitrate ( $${46}_{32}^{59}$$ 46 32 59 %). We estimate that the N deposition-induced C sink in forests in the 2010s is $${0.72}_{0.49}^{0.96}$$ 0.72 0.49 0.96 Pg C yr−1, higher than previous estimates because of a larger role for oxidized N and greater rates of global N deposition.

Suggested Citation

  • Geshere Abdisa Gurmesa & Ang Wang & Shanlong Li & Shushi Peng & Wim Vries & Per Gundersen & Philippe Ciais & Oliver L. Phillips & Erik A. Hobbie & Weixing Zhu & Knute Nadelhoffer & Yi Xi & Edith Bai &, 2022. "Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28345-1
    DOI: 10.1038/s41467-022-28345-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28345-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28345-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Herbert J. Kronzucker & M. Yaeesh Siddiqi & Anthony D. M. Glass, 1997. "Conifer root discrimination against soil nitrate and the ecology of forest succession," Nature, Nature, vol. 385(6611), pages 59-61, January.
    2. Knute J. Nadelhoffer & Bridget A. Emmett & Per Gundersen & O. Janne Kjønaas & Chris J. Koopmans & Patrick Schleppi & Albert Tietema & Richard F. Wright, 1999. "Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests," Nature, Nature, vol. 398(6723), pages 145-148, March.
    3. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    4. Calcagno, Vincent & de Mazancourt, Claire, 2010. "glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i12).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maoyuan Feng & Shushi Peng & Yilong Wang & Philippe Ciais & Daniel S. Goll & Jinfeng Chang & Yunting Fang & Benjamin Z. Houlton & Gang Liu & Yan Sun & Yi Xi, 2023. "Overestimated nitrogen loss from denitrification for natural terrestrial ecosystems in CMIP6 Earth System Models," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    2. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    3. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "Assessing nitrogen controls on carbon, water and energy exchanges in major plant functional types across North America using a carbon and nitrogen coupled ecosystem model," Ecological Modelling, Elsevier, vol. 323(C), pages 12-27.
    4. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    5. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    7. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    8. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    9. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    10. Florian Rabitz & Alin Olteanu & Jurgita Jurkevičienė & Agnė Budžytė, 2021. "A topic network analysis of the system turn in the environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2107-2140, March.
    11. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    12. Chengpeng Zhang & Yu Ye & Xiuqi Fang & Hansunbai Li & Xue Zheng, 2020. "Coincidence Analysis of the Cropland Distribution of Multi-Sets of Global Land Cover Products," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    13. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    14. László Kovács, 2019. "Applications of Metaheuristics in Insurance," Society and Economy, Akadémiai Kiadó, Hungary, vol. 41(3), pages 371-395, September.
    15. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    16. Verónica Lloréns-Rico & Ann C. Gregory & Johan Van Weyenbergh & Sander Jansen & Tina Van Buyten & Junbin Qian & Marcos Braz & Soraya Maria Menezes & Pierre Van Mol & Lore Vanderbeke & Christophe Dooms, 2021. "Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    17. L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
    18. Yusen Chen & Shihang Zhang & Yongdong Wang, 2022. "Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia," Land, MDPI, vol. 11(10), pages 1-12, October.
    19. Charles A. Taylor & Geoffrey Heal, 2021. "Fertilizer and Algal Blooms: A Satellite Approach to Assessing Water Quality," NBER Chapters, in: Risks in Agricultural Supply Chains, National Bureau of Economic Research, Inc.
    20. Chen, Minpeng & Sun, Fu & Shindo, Junko, 2016. "China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 10-27.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28345-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.