IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004414.html
   My bibliography  Save this article

Plastic mulching enhances maize yield and water productivity by improving root characteristics, green leaf area, and photosynthesis for different cultivars in dryland regions

Author

Listed:
  • Wu, Lihong
  • Quan, Hao
  • Wu, Lina
  • Zhang, Xi
  • Ding, Dianyuan
  • Feng, Hao
  • Siddique, Kadambot H.M.
  • Liu, De Li
  • Wang, Bin

Abstract

Uneven precipitation during the growing season and frequent seasonal droughts on the Loess Plateau in Northwest China adversely affect crop production and water use efficiency. While plastic mulching (PM) has been used to alleviate water stress, few studies have examined the traits maize cultivars need to adapt to the altered water environment under PM and achieve high yields. A two-year field experiment was conducted to assess the root characteristics and aboveground growth traits of three widely used high-yielding maize cultivars—Zhengdan 958 (ZD), Huanong 138 (HN), Heboshi 122 (HBS)—under no mulching (NM) and PM conditions. Among the three cultivars, HBS had the highest root system indices—root length density (RLD), root surface area density (RSD), and root biomass—in the topsoil (0–40 cm), followed by ZD and HN under both NM and PM conditions. Under NM, HBS_NM treatment exhibited strong water absorption, improving photosynthesis and yield, making it suitable for drought conditions. Under PM, topsoil moisture increased significantly, with root system indices increasing by 22.5–36.1 % for RLD, 30.2–36.1 % for RSD, and 25.2–36.5 % for root biomass across the cultivars compared to NM. While ZD_PM did not have the highest root system indices under PM, it exhibited higher green leaf area index (4.5–7.5 %), chlorophyll content (2.8–8.6 %), and photosynthetic rate (6.0–14.5 %), resulting in the highest aboveground biomass and yield among the treatments. These findings suggest ZD is better adapted to the enhanced soil moisture under PM. Future research should focus on breeding genotypes that thrive under PM conditions, emphasizing traits such as larger leaf areas and higher photosynthetic rates to boost crop productivity in rainfed areas.

Suggested Citation

  • Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Ding, Dianyuan & Feng, Hao & Siddique, Kadambot H.M. & Liu, De Li & Wang, Bin, 2024. "Plastic mulching enhances maize yield and water productivity by improving root characteristics, green leaf area, and photosynthesis for different cultivars in dryland regions," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004414
    DOI: 10.1016/j.agwat.2024.109105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Waters, Cathy, 2020. "Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain," Agricultural Systems, Elsevier, vol. 181(C).
    3. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Xiang, Youzheng & Yan, Shicheng & Wu, You, 2019. "Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 996-1003.
    4. Quan, Hao & Wu, Lihong & Ding, Dianyuan & Yang, Zhenting & Wang, Naijiang & Chen, Guangjie & Li, Cheng & Dong, Qin'ge & Feng, Hao & Zhang, Tibin & Siddique, Kadambot H.M., 2022. "Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China," Agricultural Water Management, Elsevier, vol. 265(C).
    5. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Guo, Jinjin & Lu, Junsheng & Wu, Lifeng & Qiang, Shengcai & Xiang, Youzhen, 2022. "Source-sink relationship and yield stability of two maize cultivars in response to water and fertilizer inputs in northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Song, Qilong & Zhang, Fangfang & Li, Xin & Yue, Shanchao & Luo, Zhuzhu & Li, Shiqing, 2024. "Understanding of maize root responses to changes in water status induced by plastic film mulching cultivation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 301(C).
    7. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    8. Wang, Jiangtao & Du, Gangfeng & Tian, Jingshan & Zhang, Yali & Jiang, Chuangdao & Zhang, Wangfeng, 2020. "Effect of irrigation methods on root growth, root-shoot ratio and yield components of cotton by regulating the growth redundancy of root and shoot," Agricultural Water Management, Elsevier, vol. 234(C).
    9. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    10. Li, Cheng & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Zhang, Tibin & Dong, Qin’ge & Feng, Hao & Zhang, Wenxin & Siddique, Kadambot H.M., 2023. "Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area," Agricultural Water Management, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Yulong & Liao, Zhenqi & Lai, Zhenlin & Bai, Zhentao & Zhang, Fucang & Li, Zhijun & Fan, Junliang, 2023. "Interactive effects of planting pattern, supplementary irrigation and planting density on grain yield, water-nitrogen use efficiency and economic benefit of winter wheat in a semi-humid but drought-pr," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Li, Cheng & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Zhang, Tibin & Dong, Qin’ge & Feng, Hao & Zhang, Wenxin & Siddique, Kadambot H.M., 2023. "Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Liao, Zhenqi & Zhang, Chen & Yu, Shuolei & Lai, Zhenlin & Wang, Haidong & Zhang, Fucang & Li, Zhijun & Wu, Peng & Fan, Junliang, 2023. "Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Jing, Bing & Xiong, Li & Fu, Weiqing & Shah, Farooq & Zheng, Xiaochen & Wu, Wei, 2024. "Ridge–furrow with plastic film mulching in combination with reduced nitrogen application rate improves water productivity and yield of sunflower in dry semi–humid regions," Agricultural Water Management, Elsevier, vol. 303(C).
    5. Li, Wenlong & Gu, Xiaobo & Du, Yadan & Zheng, Xiaobo & Lu, Shiyu & Cheng, Zhikai & Cai, Wenjing & Chang, Tian, 2023. "Optimizing nitrogen, phosphorus, and potassium fertilization regimes to improve maize productivity under double ridge-furrow planting with full film mulching," Agricultural Water Management, Elsevier, vol. 287(C).
    6. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    7. Chen, Rui & Wang, Zhenhua & Dhital, Yam Prasad & Zhang, Xinyu, 2022. "A comparative evaluation of soil preferential flow of mulched drip irrigation cotton field in Xinjiang based on dyed image variability versus fractal characteristic parameter," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Wang, Tianyu & Wang, Zhenhua & Zhang, Jinzhu & Ma, Kai, 2023. "Application effect of different oxygenation methods with mulched drip irrigation system in Xinjiang," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    10. Zhao, Zhengxin & Li, Zongyang & Li, Yao & Yu, Lianyu & Gu, Xiaobo & Cai, Huanjie, 2024. "Supplementary irrigation and reduced nitrogen application improve the productivity, water and nitrogen use efficiency of maize-soybean intercropping system in the semi-humid drought-prone region of Ch," Agricultural Water Management, Elsevier, vol. 305(C).
    11. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    12. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Deng, Jianqiang & Zhang, Zhixin & Liang, Zhiting & Li, Zhou & Yang, Xianlong & Wang, Zikui & Coulter, Jeffrey A. & Shen, Yuying, 2020. "Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system," Agricultural Water Management, Elsevier, vol. 230(C).
    14. Ding, Dianyuan & Yang, Zijie & Wu, Lihong & Zhao, Ying & Zhang, Xi & Chen, Xiaoping & Feng, Hao & Zhang, Chao & Wendroth, Ole, 2024. "Optimizing nitrogen-fertilizer management by using RZWQM2 with consideration of precipitation can enhance nitrogen utilization on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 299(C).
    15. Chaobiao Meng & Jianyu Zhao & Ning Wang & Kaijing Yang & Fengxin Wang, 2022. "Black Plastic Film Mulching Increases Soil Nitrous Oxide Emissions in Arid Potato Fields," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    16. Shuyuan He & Xiuni Li & Menggen Chen & Xiangyao Xu & Wenjing Zhang & Huiling Chi & Panxia Shao & Fenda Tang & Tao Gong & Ming Guo & Mei Xu & Wenyu Yang & Weiguo Liu, 2024. "Excellent Canopy Structure in Soybeans Can Improve Their Photosynthetic Performance and Increase Yield," Agriculture, MDPI, vol. 14(10), pages 1-25, October.
    17. Gao, Jia & Zhang, Yingjun & Xu, Chenchen & Wang, Pu & Huang, Shoubing & Lv, Yanjie, 2024. "Enhancing spatial and temporal coordination of soil water and root growth to improve maize (Zea mays L.) yield," Agricultural Water Management, Elsevier, vol. 294(C).
    18. Lu, Yongli & Ma, Renshi & Gao, Wei & You, Yongliang & Jiang, Congze & Zhang, Zhixin & Kamran, Muhammad & Yang, Xianlong, 2024. "Optimizing the nitrogen application rate and planting density to improve dry matter yield, water productivity and N-use efficiency of forage maize in a rainfed region," Agricultural Water Management, Elsevier, vol. 305(C).
    19. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    20. Sunling, Yang & Shahzad, Ali & Wang, Meng & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "Urease and nitrification inhibitors with drip fertigation strategies to mitigate global warming potential and improve water-nitrogen efficiency of maize under semi-arid regions," Agricultural Water Management, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.