IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421007289.html
   My bibliography  Save this article

Spatio-temporal variation of irrigation water requirements for wheat and maize in the Yellow River Basin, China, 1974–2017

Author

Listed:
  • Liu, Yanqi
  • Lin, Yifan
  • Huo, Zailin
  • Zhang, Chenglong
  • Wang, Chaozi
  • Xue, Jingyuan
  • Huang, Guanhua

Abstract

Irrigation is a prerequisite for the sustainable development of agricultural production. With the existing of water resources shortage and climate change, it is of great importance to explore the variation of crop irrigation water requirement (IWR) in the Yellow River Basin (YRB). Based on 1974–2017 meteorological dataset from 96 stations, we analyzed the spatio-temporal variation characteristics of meteorological factors and crop IWR during the growing seasons of four main crops including spring wheat, winter wheat, spring maize and summer maize, respectively. Furthermore, we explored the dominant meteorological factors of the crop IWR variation. The results indicated that daily mean temperature (T) had a significant upward trend, while the effective precipitation (Peff) did not change significantly during the growing season of each crop in the past 44 years. Crop IWR had increasing trend with 9.9 mm/decade, 4.3 mm/decade, 6.4 mm/decade for spring wheat, winter wheat, spring maize respectively, while a slight decreasing trend with − 1.7 mm/decade for summer maize. It is noted that extremely significant increase in crop IWR were mostly located in Ningxia, southern Gansu and eastern Qinghai. Moreover, Peff, net radiation (Rn) and relative humidity (RH) were identified as the dominant meteorological factors influencing variations of IWR for all crops. In the context of significant increase in T and uncertain future precipitation patterns, IWR for spring wheat, winter wheat and spring maize in the YRB has shown an upward trend which is not favorable to the sustainable development of water resources. It is urgent to take effective water-saving measures to hedge the adverse impact of climate change on agriculture. These findings can provide scientific basis for rational allocation of agricultural water resources in the YRB.

Suggested Citation

  • Liu, Yanqi & Lin, Yifan & Huo, Zailin & Zhang, Chenglong & Wang, Chaozi & Xue, Jingyuan & Huang, Guanhua, 2022. "Spatio-temporal variation of irrigation water requirements for wheat and maize in the Yellow River Basin, China, 1974–2017," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007289
    DOI: 10.1016/j.agwat.2021.107451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421007289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hui Ju & Marijn Velde & Erda Lin & Wei Xiong & Yingchun Li, 2013. "The impacts of climate change on agricultural production systems in China," Climatic Change, Springer, vol. 120(1), pages 313-324, September.
    2. De Silva, C.S. & Weatherhead, E.K. & Knox, J.W. & Rodriguez-Diaz, J.A., 2007. "Predicting the impacts of climate change--A case study of paddy irrigation water requirements in Sri Lanka," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 19-29, October.
    3. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    4. Chen, Guangzhou & Wu, Peng & Wang, Junying & Zhang, Peng & Jia, Zhikuan, 2022. "Ridge–furrow rainfall harvesting system helps to improve stability, benefits and precipitation utilization efficiency of maize production in Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    6. Zhang, Chenglong & Guo, Ping & Huo, Zailin, 2021. "Irrigation water resources management under uncertainty: An interval nonlinear double-sided fuzzy chance-constrained programming approach," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Dingre, S.K. & Gorantiwar, S.D., 2020. "Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Guoqing Wang & Jianyun Zhang & Junliang Jin & Josh Weinberg & Zhenxin Bao & Cuishan Liu & Yanli Liu & Xiaolin Yan & Xiaomeng Song & Ran Zhai, 2017. "Impacts of climate change on water resources in the Yellow River basin and identification of global adaptation strategies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 67-83, January.
    10. Zhang, Chenglong & Li, Xuemin & Guo, Ping & Huo, Zailin, 2021. "Balancing irrigation planning and risk preference for sustainable irrigated agriculture: A fuzzy credibility-based optimization model with the Hurwicz criterion under uncertainty," Agricultural Water Management, Elsevier, vol. 254(C).
    11. Qiang Zhang & Chong-Yu Xu & Tao Yang, 2009. "Variability of Water Resource in the Yellow River Basin of Past 50 Years, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1157-1170, April.
    12. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    13. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Riping & Pan, Zhihua & Zhang, Jun & Chen, Xiao & Qi, Yinglong & Zhang, Ziyuan & Chen, Shaoqing & Jiang, Kang & Ma, Shangqian & Wang, Jialin & Huang, Zhefan & Cai, Linlin & Wu, Yao & Guo, Ning & X, 2023. "Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China," Agricultural Water Management, Elsevier, vol. 283(C).
    2. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Xiong, Lvyang & Jiang, Yao & Li, Xinyi & Ren, Dongyang & Huang, Guanhua, 2023. "Long-term regional groundwater responses and their ecological impacts under agricultural water saving in an arid irrigation district, upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 288(C).
    4. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    5. Geng, Qingling & Zhao, Yongkun & Sun, Shikun & He, Xiaohui & Wang, Dong & Wu, Dingrong & Tian, Zhihui, 2023. "Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 280(C).
    6. Fan, Yunfei & He, Liuyue & Liu, Yi & Wang, Sufen, 2022. "Optimal cropping patterns can be conducive to sustainable irrigation: Evidence from the drylands of Northwest China," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    2. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    4. Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
    5. Xiaowei Chuai & Ye Yuan & Rongqin Zhao & Song Song, 2021. "High-resolution monitoring of inland water bodies across China in long time series and water resource changes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3673-3695, March.
    6. Wenjian He & Yiyang Liu & Huaping Sun & Farhad Taghizadeh-Hesary, 2020. "How Does Climate Change Affect Rice Yield in China?," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    7. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    8. Shan He & Tianling Qin & Fang Liu & Shanshan Liu & Biqiong Dong & Jianwei Wang & Hanjiang Nie, 2019. "Effects of Slope Ecological Restoration on Runoff and Its Response to Climate Change," IJERPH, MDPI, vol. 16(20), pages 1-22, October.
    9. Rowshon, M.K. & Dlamini, N.S. & Mojid, M.A. & Adib, M.N.M. & Amin, M.S.M. & Lai, S.H., 2019. "Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme," Agricultural Water Management, Elsevier, vol. 216(C), pages 138-152.
    10. Kun Jia & Wei Zhang & Bingyan Xie & Xitong Xue & Feng Zhang & Dongrui Han, 2022. "Does Climate Change Increase Crop Water Requirements of Winter Wheat and Summer Maize in the Lower Reaches of the Yellow River Basin?," IJERPH, MDPI, vol. 19(24), pages 1-12, December.
    11. Manfei Zhang & Xiao Wang & Weibo Zhou, 2021. "Effects of Water-Saving Irrigation on Hydrological Cycle in an Irrigation District of Northern China," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    12. Gu, Nan & Zhang, Jianyun & Wang, Guoqing & Liu, Cuishan & Wang, Zhenlong & Lü, Haishen, 2022. "An atmospheric and soil thermal-based wheat crop coefficient method using additive crop growth models," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Xueyan Zhang, 2019. "Multiple Cropping System Expansion: Increasing Agricultural Greenhouse Gas Emissions in the North China Plain and Neighboring Regions," Sustainability, MDPI, vol. 11(14), pages 1-14, July.
    14. Hui Ju & Qin Liu & Yingchun Li & Xiaoxu Long & Zhongwei Liu & Erda Lin, 2020. "Multi-Stakeholder Efforts to Adapt to Climate Change in China’s Agricultural Sector," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    15. Yin, Jieling & Wu, Nan & Engel, Bernie A. & Hua, En & Zhang, Fuyao & Li, Xin & Wang, Yubao, 2022. "Multi-dimensional evaluation of water footprint and implication for crop production: A case study in Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 267(C).
    16. Xie, Wei & Huang, Jikun & Wang, Jinxia & Cui, Qi & Robertson, Ricky & Chen, Kevin, 2020. "Climate change impacts on China's agriculture: The responses from market and trade," China Economic Review, Elsevier, vol. 62(C).
    17. Islam, A.R.M.Towfiqul & Shen, Shuang-He & Yang, Shen-Bin, 2018. "Predicting design water requirement of winter paddy under climate change condition using frequency analysis in Bangladesh," Agricultural Water Management, Elsevier, vol. 195(C), pages 58-70.
    18. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    19. Hengli Wang & Hong Liu & Rui Ma, 2022. "Assessment and Prediction of Grain Production Considering Climate Change and Air Pollution in China," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    20. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.