IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i20p4017-d278477.html
   My bibliography  Save this article

Effects of Slope Ecological Restoration on Runoff and Its Response to Climate Change

Author

Listed:
  • Shan He

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Tianling Qin

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Fang Liu

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Shanshan Liu

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Biqiong Dong

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Jianwei Wang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Hanjiang Nie

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

Slope ecological restoration and climate change are important factors affecting the hydrological processes of the Huangshui River Basin in Qinghai province, China. How to quantitatively identify the impact of slope ecological restoration on runoff and whether slope ecological restoration can mitigate the impact of future climate change on runoff are both very important. In this paper, the Huangshui River above the center of Minhe county was taken as the research area, and the Pinus tabulaeformis and shrubs were taken as the main forest land types of slope ecological restoration. First, based on the law of forest land variation, the construction scales of slope ecological restoration in different periods were identified. The influence of slope ecological restoration on runoff was then quantitatively evaluated by using a distributed hydrological model. Second, the future climate scenarios of five general circulation models (GCMs) under three representative concentration pathways (RCPs) (i.e., RCP2.6, RCP4.5, and RCP8.5) from 2021 to 2050 were selected and modified by model integration. Combined with the slope ecological restoration scenarios, the influence of slope ecological restoration on runoff under future climate scenarios was explored. The results showed that the effect of slope ecological restoration was significant. Compared with 1980, the area of slope ecological restoration increased by 24% in 2017. Under the present climate conditions (1960–2017), different periods of slope ecological restoration have an effect on the process of runoff in the wet season (June, July, August, and September) and dry season (January, February, March, and December), which eliminates the maximum, replenishes the minimum, and reduces the variability of runoff processes in the watershed. Under the future climate scenario (2021–50), slope ecological restoration will reduce runoff. On the other hand, climate change will increase runoff, and the combination of the two effects will have a certain offsetting effect. On the whole, comparing the influence of slope ecological restoration on the runoff process with that of climate change in different seasons, due to the main influence of slope ecological restoration, the runoff decreased by about 55% in the temperate season (April, May, October, and November), and increased by about 50% in the dry season or wet season due to the main influence of future climate scenarios.

Suggested Citation

  • Shan He & Tianling Qin & Fang Liu & Shanshan Liu & Biqiong Dong & Jianwei Wang & Hanjiang Nie, 2019. "Effects of Slope Ecological Restoration on Runoff and Its Response to Climate Change," IJERPH, MDPI, vol. 16(20), pages 1-22, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:4017-:d:278477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/20/4017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/20/4017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun Yang & Baisheng Ye & Degang Zhou & Bingyi Wu & Thomas Foken & Jun Qin & Zhaoye Zhou, 2011. "Response of hydrological cycle to recent climate changes in the Tibetan Plateau," Climatic Change, Springer, vol. 109(3), pages 517-534, December.
    2. Qiang Zhang & Chong-Yu Xu & Tao Yang, 2009. "Variability of Water Resource in the Yellow River Basin of Past 50 Years, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1157-1170, April.
    3. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fekadu Fufa Feyessa & Seifu Kebede Debela, 2022. "Rainfall-Runoff Modeling And Its Prioritization At Sub-Watershed Level Using Swat Model: A Case Of Finca’Aa, Oromia, Western Ethiopia," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 6(1), pages 22-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Chuai & Ye Yuan & Rongqin Zhao & Song Song, 2021. "High-resolution monitoring of inland water bodies across China in long time series and water resource changes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3673-3695, March.
    2. Liu, Yanqi & Lin, Yifan & Huo, Zailin & Zhang, Chenglong & Wang, Chaozi & Xue, Jingyuan & Huang, Guanhua, 2022. "Spatio-temporal variation of irrigation water requirements for wheat and maize in the Yellow River Basin, China, 1974–2017," Agricultural Water Management, Elsevier, vol. 262(C).
    3. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    6. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    7. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    8. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    9. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    10. Jincai Zhao & Yiyao Wang & Xiufeng Zhang & Qianxi Liu, 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    11. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    12. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    13. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    14. Weibin Zhang & Xiaochun Zha & Jiaxing Li & Wei Liang & Yugai Ma & Dongmei Fan & Sha Li, 2014. "Spatiotemporal Change of Blue Water and Green Water Resources in the Headwater of Yellow River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4715-4732, October.
    15. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    16. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    17. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    18. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    19. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    20. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:4017-:d:278477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.