IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v259y2022ics037837742100490x.html
   My bibliography  Save this article

Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China

Author

Listed:
  • Duan, Chenxiao
  • Chen, Jifei
  • Li, Jiabei
  • Su, Shunshun
  • Lei, Qi
  • Feng, Hao
  • Wu, Shufang
  • Zhang, Tibin
  • Siddique, Kadambot H.M.
  • Zou, Yufeng

Abstract

Droughts, intense soil evaporation, and poor soil structure with low water holding capacity and nutrients restrict agricultural production in the Qaidam Basin on the Tibetan Plateau. Excessive chemical fertilizers have been applied to increase the yields of wolfberry (Lycium barbarum L.), a significant economic crop in northwest China, which has further degraded soils. Biomaterial amendments and ridge–furrow mulching are effective measures for increasing soil water availability, crop yields, and water use efficiency (WUE). However, the combined effects of biomaterial amendments and ridge–furrow mulching on soil hydrothermal conditions, crop growth, and yield in this area are unknown. A field study was undertaken in 2018 and 2019 to investigate their combined influences on soil moisture and temperature, crop growth, yield characteristics, and WUE on the Tibetan Plateau. The experiment comprised four treatments: flat planting with film mulching (FM), flat planting with film mulching and biomaterial amendment (FMBA), ridge–furrow planting with film mulching (RM), and ridge–furrow planting with film mulching and biomaterial amendment (RMBA). The biomaterial amendment and ridge–furrow mulching treatments increased soil water content in the 0–120 cm soil layer, especially at 0–60 cm soil depth at early growth stages, compared with FM. Furthermore, the ridge–furrow mulching treatments had significantly higher soil temperatures than the FM treatment at the sprout stage. The RMBA treatment produced favorable soil hydrothermal properties, which significantly increased mean plant height, ground diameter, and root length density (RLD). The RMBA treatment also produced the highest crop yield, WUE, and berry quality in both growing seasons. Compared with FM, the RMBA treatment increased mean yield and WUE by 23.0% and 28.6%, respectively, across the two growing seasons. We conclude that the RMBA treatment is an effective and promising cultivation pattern for alleviating water scarcity and improving soil hydrothermal conditions, yield, and WUE on the Tibetan Plateau.

Suggested Citation

  • Duan, Chenxiao & Chen, Jifei & Li, Jiabei & Su, Shunshun & Lei, Qi & Feng, Hao & Wu, Shufang & Zhang, Tibin & Siddique, Kadambot H.M. & Zou, Yufeng, 2022. "Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China," Agricultural Water Management, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s037837742100490x
    DOI: 10.1016/j.agwat.2021.107213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100490X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xudong & Kamran, Muhammad & Li, Fangjian & Xue, Xuanke & Jia, Zhikuan & Han, Qingfang, 2020. "Optimizing fertilization under ridge-furrow rainfall harvesting system to improve foxtail millet yield and water use in a semiarid region, China," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Yang, Changming & Yang, Linzhang & Yang, Yongxing & Ouyang, Zhu, 2004. "Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils," Agricultural Water Management, Elsevier, vol. 70(1), pages 67-81, October.
    3. Mo, Fei & Wang, Jian-Yong & Ren, Hong-Xu & Sun, Guo-Jun & Kavagi, Levis & Zhou, Hong & Nguluu, Simon N. & Gicheru, Patrick & Cheruiyot, Kiprotich W. & Xiong, You-Cai, 2018. "Environmental and economic benefits of micro–field rain–harvesting farming system at maize (Zea mays L.) field scale in semiarid east African Plateau," Agricultural Water Management, Elsevier, vol. 206(C), pages 102-112.
    4. Turmel, Marie-Soleil & Speratti, Alicia & Baudron, Frédéric & Verhulst, Nele & Govaerts, Bram, 2015. "Crop residue management and soil health: A systems analysis," Agricultural Systems, Elsevier, vol. 134(C), pages 6-16.
    5. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Ullah, Hidayat & Alam, Mukhtar & Adnan, Muhammad & Daur, Ihsanullah & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikua, 2018. "Tillage and deficit irrigation strategies to improve winter wheat production through regulating root development under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 44-54.
    6. Zhao, Hong & Xiong, You-Cai & Li, Feng-Min & Wang, Run-Yuan & Qiang, Sheng-Cai & Yao, Tao-Feng & Mo, Fei, 2012. "Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem," Agricultural Water Management, Elsevier, vol. 104(C), pages 68-78.
    7. Bu, Ling-duo & Liu, Jian-liang & Zhu, Lin & Luo, Sha-sha & Chen, Xin-ping & Li, Shi-qing & Lee Hill, Robert & Zhao, Ying, 2013. "The effects of mulching on maize growth, yield and water use in a semi-arid region," Agricultural Water Management, Elsevier, vol. 123(C), pages 71-78.
    8. Jiang, Rui & Li, Xiao & Zhu, Wei & Wang, Kun & Guo, Sheng & Misselbrook, Tom & Hatano, Ryusuke, 2018. "Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 203(C), pages 277-288.
    9. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    10. Kiboi, M.N. & Ngetich, K.F. & Fliessbach, A. & Muriuki, A. & Mugendi, D.N., 2019. "Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya," Agricultural Water Management, Elsevier, vol. 217(C), pages 316-331.
    11. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Gai, Xiapu & Liu, Hongbin & Liu, Jian & Zhai, Limei & Yang, Bo & Wu, Shuxia & Ren, Tianzhi & Lei, Qiuliang & Wang, Hongyuan, 2018. "Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain," Agricultural Water Management, Elsevier, vol. 208(C), pages 384-392.
    13. Maneepitak, Sumana & Ullah, Hayat & Paothong, Kritkamol & Kachenchart, Boonlue & Datta, Avishek & Shrestha, Rajendra P., 2019. "Effect of water and rice straw management practices on yield and water productivity of irrigated lowland rice in the Central Plain of Thailand," Agricultural Water Management, Elsevier, vol. 211(C), pages 89-97.
    14. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J., 2015. "Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China," Agricultural Water Management, Elsevier, vol. 162(C), pages 15-32.
    15. Wang, Xiaolin & Ren, Yuanyuan & Zhang, Suiqi & Chen, Yinglong & Wang, Nan, 2017. "Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 88-98.
    16. Li, Weiwei & Xiong, Li & Wang, Changjiang & Liao, Yuncheng & Wu, Wei, 2019. "Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas," Agricultural Water Management, Elsevier, vol. 218(C), pages 211-221.
    17. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    18. Su, Ziyou & Zhang, Jinsong & Wu, Wenliang & Cai, Dianxiong & Lv, Junjie & Jiang, Guanghui & Huang, Jian & Gao, Jun & Hartmann, Roger & Gabriels, Donald, 2007. "Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 87(3), pages 307-314, February.
    19. Tadayonnejad, M. & Mosaddeghi, M.R. & Dashtaki, Sh. Ghorbani, 2017. "Changing soil hydraulic properties and water repellency in a pomegranate orchard irrigated with saline water by applying polyacrylamide," Agricultural Water Management, Elsevier, vol. 188(C), pages 12-20.
    20. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    21. Qi Wang & Enhe Zhang & Fengmin Li & Fengrui Li, 2008. "Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1431-1443, October.
    22. Song, Xiaolin & Gao, Xiaodong & Zhao, Xining & Wu, Pute & Dyck, Miles, 2017. "Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 184(C), pages 170-177.
    23. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    4. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Zhang, Xudong & Li, Zhimin & Siddique, Kadambot H.M. & Shayakhmetova, Altyn & Jia, Zhikuan & Han, Qingfang, 2020. "Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    7. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    8. Hou, Xianqing & Li, Rong, 2019. "Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    9. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Gu, Xiaobo & Cai, Huanjie & Fang, Heng & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2021. "Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    12. Li, Weiwei & Xiong, Li & Wang, Changjiang & Liao, Yuncheng & Wu, Wei, 2019. "Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas," Agricultural Water Management, Elsevier, vol. 218(C), pages 211-221.
    13. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    14. Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
    15. Yildirim, Demet & Cemek, Bilal & Unlukara, Ali, 2022. "The effect of mulched ridge and furrow micro catchment water harvesting on red pepper yield and quality features in Bafra Plain of Northern Turkey," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Sukamal Sarkar & Milan Skalicky & Akbar Hossain & Marian Brestic & Saikat Saha & Sourav Garai & Krishnendu Ray & Koushik Brahmachari, 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    17. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    18. Munyasya, Alex Ndolo & Koskei, Kiprotich & Zhou, Rui & Liu, Shu-Tong & Indoshi, Sylvia Ngaira & Wang, Wei & Zhang, Xu-Cheng & Cheruiyot, Wesly Kiprotich & Mburu, David Mwehia & Nyende, Aggrey Bernard , 2022. "Integrated on-site & off-site rainwater-harvesting system boosts rainfed maize production for better adaptation to climate change," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Kashif AKHTAR & Weiyu WANG & Ahmad KHAN & Guangxin REN & Muhammad Zahir AFRIDI & Yongzhong FENG & Gaihe YANG, 2018. "Wheat straw mulching with fertilizer nitrogen: An approach for improving soil water storage and maize crop productivity," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(7), pages 330-337.
    20. Hu, Yajin & Ma, Penghui & Wu, Shufang & Sun, Benhua & Feng, Hao & Pan, Xiaolian & Zhang, Binbin & Chen, Guangjie & Duan, Chenxiao & Lei, Qi & Siddique, Kadambot H.M. & Liu, Boyang, 2020. "Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching," Agricultural Water Management, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s037837742100490x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.