IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002778.html
   My bibliography  Save this article

Irriblend-DSW: A decision support tool for the optimal blending of desalinated and conventional irrigation waters in dry regions

Author

Listed:
  • Gallego-Elvira, B.
  • Reca, J.
  • Martin-Gorriz, B.
  • Maestre-Valero, J.F.
  • Martínez-Alvarez, V.

Abstract

Desalinated sea water (DSW) is increasingly being used as an alternative source of irrigation in dry coastal areas. Owing to its high price and singular composition, it is often blended with other water resources to curb costs. Although this is a common practice, limited resources are available to manage the increased agro-economic complexity required to balance several water sources with heterogeneous quality, price, and availability restrictions. To support the management of fertigation with DSW, in this study, we present an open-source decision support tool (DST), Irriblend-DSW. The DST has been designed to identify potentially profitable fertigation options for different water and fertiliser availability scenarios. To demonstrate the key features of the tool, we applied it to two actual case study scenarios in south-eastern Spain, where severe water scarcity led to massive seawater desalination for agricultural supply. The information provided by the DST enabled the assessment of the viability of different water blending options and the selection of an optimal combination of water and fertilisers. The simulation results showed that the fertigation costs of the studied crops, hydroponic lettuce, and greenhouse tomato substantially increased with the integration of DSW. The DST output showed how water price rises, and how additional types and amounts of fertilisers are required when more DSW is used. However, because the salinity of the blend is also reduced with the use of DSW, the yield outcome improves and, thus, to some extent, compensates for the increased cost. In fact, despite higher costs, the studied crops were found to be very profitable when the optimised solutions computed by the DST were selected. Moreover, the optimum fertigation solutions not only reduced costs but also decreased nutrient leaching in areas of severely polluted aquifers.

Suggested Citation

  • Gallego-Elvira, B. & Reca, J. & Martin-Gorriz, B. & Maestre-Valero, J.F. & Martínez-Alvarez, V., 2021. "Irriblend-DSW: A decision support tool for the optimal blending of desalinated and conventional irrigation waters in dry regions," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002778
    DOI: 10.1016/j.agwat.2021.107012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Sánchez & Juan Reca & Juan Martínez, 2015. "Water Productivity in a Mediterranean Semi-Arid Greenhouse District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5395-5411, November.
    2. Pérez-Castro, A. & Sánchez-Molina, J.A. & Castilla, M. & Sánchez-Moreno, J. & Moreno-Úbeda, J.C. & Magán, J.J., 2017. "cFertigUAL: A fertigation management app for greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 183(C), pages 186-193.
    3. Rose, David C. & Sutherland, William J. & Parker, Caroline & Lobley, Matt & Winter, Michael & Morris, Carol & Twining, Susan & Ffoulkes, Charles & Amano, Tatsuya & Dicks, Lynn V., 2016. "Decision support tools for agriculture: Towards effective design and delivery," Agricultural Systems, Elsevier, vol. 149(C), pages 165-174.
    4. Martínez-Alvarez, V. & Gallego-Elvira, B. & Maestre-Valero, J.F. & Martin-Gorriz, B. & Soto-Garcia, M., 2020. "Assessing concerns about fertigation costs with desalinated seawater in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
    6. Gallardo, Marisa & Elia, Antonio & Thompson, Rodney B., 2020. "Decision support systems and models for aiding irrigation and nutrient management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
    7. Magán, J.J. & Gallardo, M. & Thompson, R.B. & Lorenzo, P., 2008. "Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 95(9), pages 1041-1055, September.
    8. Maestre-Valero, J.F. & Martin-Gorriz, B. & Soto-García, M. & Martinez-Mate, M.A. & Martinez-Alvarez, V., 2018. "Producing lettuce in soil-based or in soilless outdoor systems. Which is more economically profitable?," Agricultural Water Management, Elsevier, vol. 206(C), pages 48-55.
    9. Eran Raveh & Alon Ben-Gal, 2018. "Leveraging Sustainable Irrigated Agriculture via Desalination: Evidence from a Macro-Data Case Study in Israel," Sustainability, MDPI, vol. 10(4), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez-Alvarez, V. & Gallego-Elvira, B. & Maestre-Valero, J.F. & Martin-Gorriz, B. & Soto-Garcia, M., 2020. "Assessing concerns about fertigation costs with desalinated seawater in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 239(C).
    2. So Pyay Thar & Thiagarajah Ramilan & Robert J. Farquharson & Deli Chen, 2021. "Identifying Potential for Decision Support Tools through Farm Systems Typology Analysis Coupled with Participatory Research: A Case for Smallholder Farmers in Myanmar," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    3. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).
    4. Xu, Xiangying & Wang, Chao & Wang, Hongjiang & Zhang, Yonglong & Cao, Zhuangzhuang & Zhang, Zhiping & Dai, Haibo & Miao, Minmin, 2023. "Development and performance evaluation of an APP for vegetable fertilization and irrigation management originated from EU-Rotate_N," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Sotirios Pilafidis & Eleftherios Kosmas & Ioannis Livieratos & Vasileios D. Gkisakis, 2024. "Assessing energy use and greenhouse gas emissions in Cretan vineyards for the development of a crop-specific decision support tool," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24415-24452, September.
    6. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
    8. Jeroen Ooge & Katrien Verbert, 2022. "Visually Explaining Uncertain Price Predictions in Agrifood: A User-Centred Case-Study," Agriculture, MDPI, vol. 12(7), pages 1-25, July.
    9. Gary Bentrup & Michael G. Dosskey, 2022. "Tree Advisor: A Novel Woody Plant Selection Tool to Support Multifunctional Objectives," Land, MDPI, vol. 11(3), pages 1-23, March.
    10. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    11. Neocleous, Damianos & Nikolaou, Georgios & Ntatsi, Georgia & Savvas, Dimitrios, 2021. "Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Elena Feo & Sylvia Burssens & Hannes Mareen & Pieter Spanoghe, 2022. "Shedding Light into the Need of Knowledge Sharing in H2020 Thematic Networks for the Agriculture and Forestry Innovation," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    13. Rui de Sousa & Luís Bragança & Manuela V. da Silva & Rui S. Oliveira, 2024. "Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    14. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    15. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    16. Carof, Matthieu & Godinot, Olivier, 2018. "A free online tool to calculate three nitrogen-related indicators for farming systems," Agricultural Systems, Elsevier, vol. 162(C), pages 28-33.
    17. Gallardo, M. & Thompson, R.B. & Rodríguez, J.S. & Rodríguez, F. & Fernández, M.D. & Sánchez, J.A. & Magán, J.J., 2009. "Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate," Agricultural Water Management, Elsevier, vol. 96(12), pages 1773-1784, December.
    18. Elleuch, Mohamed Ali & Anane, Makram & Euchi, Jalel & Frikha, Ahmed, 2019. "Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case," Agricultural Systems, Elsevier, vol. 176(C).
    19. Jouan, Julia & Carof, Matthieu & Baccar, Rim & Bareille, Nathalie & Bastian, Suzanne & Brogna, Delphine & Burgio, Giovanni & Couvreur, Sébastien & Cupiał, Michał & Dufrêne, Marc & Dumont, Benjamin & G, 2021. "SEGAE: An online serious game to learn agroecology," Agricultural Systems, Elsevier, vol. 191(C).
    20. Michels, Marius & Musshoff, Oliver, 2021. "Timing of Smartphone Adoption in Agriculture: A Tobit Regression Analysis," 2021 Conference, August 17-31, 2021, Virtual 315358, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.