IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v234y2020ics0378377419319687.html
   My bibliography  Save this article

Analyzing water table depth fluctuation response to evapotranspiration involving DRAINMOD model

Author

Listed:
  • Malakshahi, Amir- Ashkan
  • Darzi- Naftchali, Abdullah
  • Mohseni, Behrooz

Abstract

A proper prediction of the water table (WT) depth in hydrological models highly depends on the accuracy of evapotranspiration (ET) estimation. In this study, the response of WT fluctuations to changes in ET was investigated involving the DRAINMOD water management model. The WT depth data were measured during three canola growing seasons (2011-12, 2015-16 and 2016-17) in a paddy field with two subsurface drainage systems (drain depth of 65 cm with two spacing of 15 m and 30 m) in the north of Iran. For the growing seasons, ET was estimated through 17 equations including five temperature- based, four radiation- based, three pan evaporation- based, four combination- based and one mass transfer- based equations. The estimated ET values was then applied in the calibrated DRAINMOD model to simulate the corresponding WT depths in the drainage systems. The reliability of various ET estimation methods and the model predictions were evaluated using determination coefficient (R2), root mean square error (RMSE), error percentage (PE) and mean absolute deviation (MAD). Compared to the FAO- Penman-Monteith equation, the FAO-24 radiation (R2 = 0.90, RMSE = 0.31 mm d-1, MAD =0.71 mm d-1 and PE = - 0.95%), Blaney- Criddle (R2 = 0.93, RMSE = 0.38 mm d-1, MAD =0.76 mm d-1 and PE = - 6.24%), Irmak (R2 = 0.87, RMSE =0.87 mm d-1, MAD =0.41 mm d-1 and PE = - 11.09%) and FAO- 24 pan (R2 = 0.86, RMSE =0.45 mm d-1, MAD =0.80 mm d-1 and PE = - 16.18%) provided the best estimations of ET. However, the best prediction of the WT depths were obtained for the Rohwer and pan evaporation- based equations. These methods considerably improved the reliability of the DRAINMOD predictions in comparison with the Thornthwaite method which is a default method for ET calculation in the model. Based on the results, the Rohwer and FAO-24 pan equations are recommended as suitable methods for estimating ET in the DRAINMOD model for the study area.

Suggested Citation

  • Malakshahi, Amir- Ashkan & Darzi- Naftchali, Abdullah & Mohseni, Behrooz, 2020. "Analyzing water table depth fluctuation response to evapotranspiration involving DRAINMOD model," Agricultural Water Management, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:agiwat:v:234:y:2020:i:c:s0378377419319687
    DOI: 10.1016/j.agwat.2020.106125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419319687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    2. Yang, Xihua, 2008. "Evaluation and application of DRAINMOD in an Australian sugarcane field," Agricultural Water Management, Elsevier, vol. 95(4), pages 439-446, April.
    3. Wang, X. & Mosley, C.T. & Frankenberger, J.R. & Kladivko, E.J., 2006. "Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD," Agricultural Water Management, Elsevier, vol. 79(2), pages 113-136, January.
    4. C.-Y. Xu & V. Singh, 2002. "Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 197-219, June.
    5. Dalila Cervantes-Godoy & Joe Dewbre, 2010. "Economic Importance of Agriculture for Poverty Reduction," OECD Food, Agriculture and Fisheries Papers 23, OECD Publishing.
    6. Darzi-Naftchali, Abdullah & Mirlatifi, Seyed Majid & Shahnazari, Ali & Ejlali, Farid & Mahdian, Mohammad Hossein, 2013. "Effect of subsurface drainage on water balance and water table in poorly drained paddy fields," Agricultural Water Management, Elsevier, vol. 130(C), pages 61-68.
    7. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2017. "Evaluation of changes in RDIst index effected by different Potential Evapotranspiration calculation methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4981-4999, December.
    8. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    9. Aouissi, Jalel & Benabdallah, Sihem & Lili Chabaâne, Zohra & Cudennec, Christophe, 2016. "Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia," Agricultural Water Management, Elsevier, vol. 174(C), pages 39-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Nan & Zhang, Jianyun & Wang, Guoqing & Liu, Cuishan & Wang, Zhenlong & Lü, Haishen, 2022. "An atmospheric and soil thermal-based wheat crop coefficient method using additive crop growth models," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Ghane, Ehsan & Askar, Manal H. & Skaggs, R. Wayne, 2021. "Design drainage rates to optimize crop production for subsurface-drained fields," Agricultural Water Management, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    2. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Myllys, M. & Alakukku, L. & Äijö, H. & Puustinen, M. & Koivusalo, H., 2013. "Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions," Agricultural Water Management, Elsevier, vol. 121(C), pages 135-148.
    3. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Salazar, Osvaldo & Wesström, Ingrid & Joel, Abraham, 2008. "Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model," Agricultural Water Management, Elsevier, vol. 95(10), pages 1135-1143, October.
    5. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Gunn, Kpoti M. & Baule, William J. & Frankenberger, Jane R. & Gamble, Debra L. & Allred, Barry J. & Andresen, Jeff A. & Brown, Larry C., 2018. "Modeled climate change impacts on subirrigated maize relative yield in northwest Ohio," Agricultural Water Management, Elsevier, vol. 206(C), pages 56-66.
    8. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    9. Yang, Yong & Chen, Rensheng & Han, Chuntan & Liu, Zhangwen, 2021. "Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Kwon, Ho-Young & Grunwald, Sabine & Beck, Howard W. & Jung, Yunchul & Daroub, Samira H. & Lang, Timothy A. & Morgan, Kelly T., 2010. "Ontology-based simulation of water flow in organic soils applied to Florida sugarcane," Agricultural Water Management, Elsevier, vol. 97(1), pages 112-122, January.
    11. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    12. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    13. Imen Turki Abdelhedi & Sonia Zouari Zouari, 2020. "Agriculture and Food Security in North Africa: a Theoretical and Empirical Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(1), pages 193-210, March.
    14. Yohanes Boni, 2022. "Agricultural Development’s Influence on Rural Poverty Alleviation in the North Buton Regency, Indonesia—The Mediating Role of Farmer Performance," Economies, MDPI, vol. 10(10), pages 1-14, September.
    15. Neema Ciza Angélique & Vwima Stany & Philippe Lebailly & Hossein Azadi, 2022. "Agricultural Development in the Fight against Poverty: The Case of South Kivu, DR Congo," Land, MDPI, vol. 11(4), pages 1-24, March.
    16. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    17. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    18. Peter Addo Amarkai & Sinan Süheri, 2024. "Comparative Evaluation of Crop Evapotranspiration Estimation Methods in a Semi-Arid Region," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    19. Backson Mwangi & Ibrahim Macharia & Eric Bett, 2021. "Ex-post Impact Evaluation of Improved Sorghum Varieties on Poverty Reduction in Kenya: A Counterfactual Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 447-467, April.
    20. Slavisa Trajkovic & Srdjan Kolakovic, 2009. "Evaluation of Reference Evapotranspiration Equations Under Humid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3057-3067, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:234:y:2020:i:c:s0378377419319687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.