IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377419314416.html
   My bibliography  Save this article

Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation

Author

Listed:
  • Zhao, Ziyang
  • Wang, Hongrui
  • Wang, Cheng
  • Li, Wangcheng
  • Chen, Hao
  • Deng, Caiyun

Abstract

The Ningxia Hui Autonomous Region (NX) in Northwest China has been challenged by water scarcity and drought for decades. In this study, to understand the spatio-temporal variation, cause analysis and relationship with atmospheric circulation of ET0 in Ningxia, ET0 and other climate factors at 20 national climate stations from 1957 to 2018 were analyzed. Results showed that ET0 in NX (Ningxia), NYR (Northern Yellow River Irrigation Area) and SMA (Southern Mountain Area) had increased significantly at annual scale, whilst the CAZ (Central Arid Zone) was the opposite trend, and ET0 had a trend of first rise and then decline from north to south in spatial distribution. ET0 was most sensitive to RH and Tmax at annual scale in Ningxia, while the greatest contribution rates were Tmax and SD. Ningxia was becoming drier in the past decades. The abrupt change in ET0 at approximately 1990, and it’s long and short period were 25a(15a) and 10a(5a) at annual scale, respectively. The four teleconnection indices could be used to predict changes in ET0 at annual and autumn scale, while the ENSO and PDO could predict changes in ET0 of summer and IOD and AO could predict changes in ET0 of spring and winter.

Suggested Citation

  • Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419314416
    DOI: 10.1016/j.agwat.2019.105958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419314416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Brutsaert & M. B. Parlange, 1998. "Hydrologic cycle explains the evaporation paradox," Nature, Nature, vol. 396(6706), pages 30-30, November.
    2. Valiantzas, John D., 2018. "Temperature-and humidity-based simplified Penman’s ET0 formulae. Comparisons with temperature-based Hargreaves-Samani and other methodologies," Agricultural Water Management, Elsevier, vol. 208(C), pages 326-334.
    3. Lyu, Rongfang & Zhang, Jianming & Xu, Mengqun & Li, Jijun, 2018. "Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China," Land Use Policy, Elsevier, vol. 77(C), pages 163-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xuhua & Chen, Mengting & Liu, Dong & Li, Dan & Jin, Li & Liu, Shaohui & Cui, Yuanlai & Dong, Bin & Khan, Shahbaz & Luo, Yufeng, 2021. "Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 2018: The role of climate change and rice area expansion," Agricultural Water Management, Elsevier, vol. 253(C).
    2. Zihan Liu & Dong Jing & Yu Han & Jingxin Yu & Tiangang Lu & Lili Zhangzhong, 2022. "Spatiotemporal Distribution Characteristics and Influencing Factors Analysis of Reference Evapotranspiration in Beijing–Tianjin–Hebei Region from 1990 to 2019 under Climate Change," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    3. Zhao, Ziyang & Wang, Hongrui & Qin, Daoqing & Wang, Cheng, 2021. "Large-scale monitoring of soil moisture using Temperature Vegetation Quantitative Index (TVQI) and exponential filtering: A case study in Beijing," Agricultural Water Management, Elsevier, vol. 252(C).
    4. Geng, Qingling & Zhao, Yongkun & Sun, Shikun & He, Xiaohui & Wang, Dong & Wu, Dingrong & Tian, Zhihui, 2023. "Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 280(C).
    5. Sun, Juying & Wang, Genxu & Sun, Xiangyang & Hu, Zhaoyong & Lin, Shan & Wang, Fei & Yang, Yi, 2022. "New cognition on the response of reference evapotranspiration to climate change in China using an independent climatic driver system," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    2. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    4. Gianna Kitsara & Georgia Papaioannou & Athanasios Papathanasiou & Adrianos Retalis, 2013. "Dimming/brightening in Athens: Trends in Sunshine Duration, Cloud Cover and Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1623-1633, April.
    5. Kun Yang & Baisheng Ye & Degang Zhou & Bingyi Wu & Thomas Foken & Jun Qin & Zhaoye Zhou, 2011. "Response of hydrological cycle to recent climate changes in the Tibetan Plateau," Climatic Change, Springer, vol. 109(3), pages 517-534, December.
    6. Wu, Ye & Tao, Yu & Yang, Guishan & Ou, Weixin & Pueppke, Steven & Sun, Xiao & Chen, Gongtai & Tao, Qin, 2019. "Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections," Land Use Policy, Elsevier, vol. 85(C), pages 419-427.
    7. Lorilla, Roxanne Suzette & Poirazidis, Konstantinos & Detsis, Vassilis & Kalogirou, Stamatis & Chalkias, Christos, 2020. "Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece)," Ecological Modelling, Elsevier, vol. 422(C).
    8. Hengyu Pan & Yong Geng & Ji Han & Cheng Huang & Wenyi Han & Zhuang Miao, 2020. "Emergy Based Decoupling Analysis of Ecosystem Services on Urbanization: A Case of Shanghai, China," Energies, MDPI, vol. 13(22), pages 1-25, November.
    9. Xingjia Wang & Dongyan Wang & Wanying Gao & Jiaxi Lu & Xiaotong Jin, 2022. "Investigation of Spatial Coupling Coordination Development: Identifying Land System States from the Adaptation–Conflict Perspective," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    10. Shaofeng Yuan & Congmou Zhu & Lixia Yang & Fenghua Xie, 2019. "Responses of Ecosystem Services to Urbanization-Induced Land Use Changes in Ecologically Sensitive Suburban Areas in Hangzhou, China," IJERPH, MDPI, vol. 16(7), pages 1-14, March.
    11. Yuliya Vystavna & Astrid Harjung & Lucilena R. Monteiro & Ioannis Matiatos & Leonard I. Wassenaar, 2021. "Stable isotopes in global lakes integrate catchment and climatic controls on evaporation," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Zhuangzhi Sun & Chuanlong Han & Shouwei Gao & Zhaoxin Li & Mingxing Jing & Haipeng Yu & Zuankai Wang, 2022. "Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Eunjoung Lee & Gunwoo Kim, 2023. "Green Space Ecosystem Services and Value Evaluation of Three-Dimensional Roads for Sustainable Cities," Land, MDPI, vol. 12(2), pages 1-20, February.
    14. Elham Forootan, 2019. "Analysis of trends of hydrologic and climatic variables," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 163-171.
    15. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
    16. Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    17. Wang, Jinsong & Gao, Dongdong & Shi, Wei & Du, Jiayan & Huang, Zhuo & Liu, Buyuan, 2023. "Spatio-temporal changes in ecosystem service value: Evidence from the economic development of urbanised regions," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    18. Binglu Wu & Wenzhuo Liang & Jiening Wang & Dongxu Cui, 2022. "Rural Residents’ Perceptions of Ecosystem Services: A Study from Three Topographic Areas in Shandong Province, China," Land, MDPI, vol. 11(7), pages 1-21, July.
    19. Jingxu Wang & Shike Qiu & Jun Du & Shengwang Meng & Chao Wang & Fei Teng & Yangyang Liu, 2022. "Spatial and Temporal Changes of Urban Built-Up Area in the Yellow River Basin from Nighttime Light Data," Land, MDPI, vol. 11(7), pages 1-14, July.
    20. Eunjoung Lee & Gunwoo Kim, 2022. "Analysis of Domestic and International Green Infrastructure Research Trends from the ESG Perspective in South Korea," IJERPH, MDPI, vol. 19(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419314416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.