IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1956-d1511689.html
   My bibliography  Save this article

Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future

Author

Listed:
  • Xuhua Hu

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

  • Yang Xu

    (Inner Mongolia Water Conservancy Research Institute, Hohhot 010051, China)

  • Peng Huang

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

  • Dan Yuan

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Changhong Song

    (Heilongjiang Water Conservancy Investment Group Co., Ltd., Harbin 150090, China)

  • Yingtao Wang

    (Heilongjiang Provincial Water Conservancy and Hydroelectric Power Investigation, Design and Research Institute, Harbin 150080, China)

  • Yuanlai Cui

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

  • Yufeng Luo

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

Abstract

Northeast China plays a crucial role as a major grain-producing region, and attention to its land use and land cover changes (LUCC), especially farmland changes, are crucial to ensure food security and promote sustainable development. Based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data and a decision tree model, land types, especially those of paddy fields in Northeast China from 2000 to 2020, were extracted, and the spatiotemporal changes in paddy fields and their drivers were analyzed. The development trends of paddy fields under different future scenarios were explored alongside the Coupled Model Intercomparison Project Phase 6 (CMIP6) data. The findings revealed that the kappa coefficients of land use classification from 2000 to 2020 reached 0.761–0.825, with an overall accuracy of 80.5–87.3%. The proposed land classification method can be used for long-term paddy field monitoring in Northeast China. The LUCC in Northeast China is dominated by the expansion of paddy fields. The centroids of paddy fields gradually shifted toward the northeast by a distance of 292 km, with climate warming being the main reason for the shift. Under various climate scenarios, the temperature in Northeast China and its surrounding regions is projected to rise. Each scenario is anticipated to meet the temperature conditions necessary for the northeastward expansion of paddy fields. This study provides support for ensuring sustainable agricultural development in Northeast China.

Suggested Citation

  • Xuhua Hu & Yang Xu & Peng Huang & Dan Yuan & Changhong Song & Yingtao Wang & Yuanlai Cui & Yufeng Luo, 2024. "Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future," Agriculture, MDPI, vol. 14(11), pages 1-20, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1956-:d:1511689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Yulin Jiang & Zhou Lu & Shuo Li & Yongdeng Lei & Qingquan Chu & Xiaogang Yin & Fu Chen, 2020. "Large-Scale and High-Resolution Crop Mapping in China Using Sentinel-2 Satellite Imagery," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    3. Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Piedelobo, Laura & Hernández-López, David & Ballesteros, Rocío & Chakhar, Amal & Del Pozo, Susana & González-Aguilera, Diego & Moreno, Miguel A., 2019. "Scalable pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin," Agricultural Systems, Elsevier, vol. 171(C), pages 36-50.
    5. Huang, Peng & Xie, Hua & Yang, Yiting & Hu, Xuhua & Liu, Chaoli & Xu, Yang & Song, Changhong & Dai, Chunsheng & Khan, Shahbaz & Cui, Yuanlai & Luo, Yufeng, 2024. "Spatiotemporal variation in rice water requirements and area in the cold rice cultivation region of China: Past and Future," Agricultural Water Management, Elsevier, vol. 298(C).
    6. Wang, Jieyong & Zhang, Ziwen & Liu, Yansui, 2018. "Spatial shifts in grain production increases in China and implications for food security," Land Use Policy, Elsevier, vol. 74(C), pages 204-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilei Pan & Chenhui Di & Zhiguang Qu & Abbas Ali Chandio & Abdul Rehman & Huaquan Zhang, 2024. "How do agricultural subsidies affect farmers’ non-grain cultivated land production? Evidence from the fourth rural Chinese households panel data survey," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 41(1), pages 1-24, April.
    2. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    3. Zhu, Xiaohua & Zhang, Yan & Zhu, Yuanyuan & Li, Yurui & Cui, Jiaxing & Yu, Bohua, 2025. "Multidimensional deconstruction and workable solutions for addressing China's food security issues: From the perspective of sustainable diets," Land Use Policy, Elsevier, vol. 148(C).
    4. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    5. Zhao, Chunlei & Jia, Xiaoxu & Shao, Ming’an & Zhu, Yuanjun, 2021. "Regional variations in plant-available soil water storage and related driving factors in the middle reaches of the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 257(C).
    6. Liang, Han & Zhou, Yan & Cui, Yaoping & Dong, Jinwei & Gao, Zhenfei & Liu, Bailu & Xiao, Xiangming, 2024. "Is satellite-observed surface water expansion a good signal to China’s largest granary?," Agricultural Water Management, Elsevier, vol. 303(C).
    7. Ning Wang & Yingying Xing & Xiukang Wang, 2019. "Exploring Options for Improving Potato Productivity through Reducing Crop Yield Gap in Loess Plateau of China Based on Grey Correlation Analysis," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    8. Qin Zhang & Jing Shao & Jianmin Qiao & Qian Cao & Haimeng Liu, 2024. "Coupling Relationships and Driving Mechanisms of Water–Energy–Food in China from the Perspective of Supply and Demand Security," Land, MDPI, vol. 13(10), pages 1-22, October.
    9. Zhongqi Deng & Qianyu Zhao & Helen X. H. Bao, 2020. "The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy," Land, MDPI, vol. 9(9), pages 1-24, September.
    10. Yunting Shi & Li Liang & Chunsheng Wu & Zhongyuan Li, 2023. "Study on the Trade-Offs of Land Functions in the Central Plain of China for Sustainable Development," Land, MDPI, vol. 12(12), pages 1-19, November.
    11. Tian Hu & Zhengshan Ju & Xiaoyang Liu, 2023. "Towards Sustainable Food Security through Regional Grain Supply and Demand Analysis in China," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    12. Zihan Liu & Dong Jing & Yu Han & Jingxin Yu & Tiangang Lu & Lili Zhangzhong, 2022. "Spatiotemporal Distribution Characteristics and Influencing Factors Analysis of Reference Evapotranspiration in Beijing–Tianjin–Hebei Region from 1990 to 2019 under Climate Change," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    13. Hou, Dawei & Meng, Fanhao & Ji, Chao & Xie, Li & Zhu, Wenjuan & Wang, Shizhong & Sun, Hua, 2022. "Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices," Agricultural Systems, Elsevier, vol. 196(C).
    14. Li, Mengna & Zhou, Shiwei & Shen, Shuaijie & Wang, Jiale & Yang, Yuhao & Wu, Yangzhong & Chen, Fu & Lei, Yongdeng, 2024. "Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate," Agricultural Water Management, Elsevier, vol. 292(C).
    15. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    16. Xufang Zhang & Minghua Zhao & Xiaojie Wang & Rongqing Han, 2022. "Regional Differences of Farmers’ Willingness to Grow Grain and Its Influencing Factors in Shandong Province under the Background of New-Type Urbanization," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    17. Huang, Yihang & Liu, Zhengjia, 2024. "Improving Northeast China’s soybean and maize planting structure through subsidy optimization considering climate change and comparative economic benefit," Land Use Policy, Elsevier, vol. 146(C).
    18. Hui Ju & Qin Liu & Yingchun Li & Xiaoxu Long & Zhongwei Liu & Erda Lin, 2020. "Multi-Stakeholder Efforts to Adapt to Climate Change in China’s Agricultural Sector," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    19. Hu, Yumeng & Liu, Yu, 2024. "Impact of fertilizer and pesticide reductions on land use in China based on crop-land integrated model," Land Use Policy, Elsevier, vol. 141(C).
    20. Tao Pan & Ru Zhang, 2022. "Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China," Land, MDPI, vol. 11(8), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1956-:d:1511689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.