IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp568-579.html
   My bibliography  Save this article

Performance evaluation of a recently developed soil water content, dielectric permittivity, and bulk electrical conductivity electromagnetic sensor

Author

Listed:
  • Kargas, George
  • Soulis, Konstantinos X.

Abstract

CS655 Water Content Reflectometer (WCR) (Campbell Scientific, Inc., Logan, UT, USA) is a recently developed multiparameter electromagnetic sensor measuring volumetric soil water content (θ), bulk soil electrical conductivity (σb), and temperature. In this study, CS655 sensor’s performance was investigated through laboratory experiments using a set of liquids with known dielectric and salinity properties and soils featuring a wide range of conditions (including physico-chemical properties, water regimes and salinity of the water solution). The sensor’s performance was analyzed in comparison with WET and ML2 theta probe (Delta-T Device Ltd, Cambridge, UK) dielectric sensors. It was found that CS655 apparent dielectric permittivity (εa) readings were higher than that of Topp’s permittivity-water content relationship, especially at higher soil water content values, as much as 12 dimensionless permittivity units. The results suggested that the relationship between experimentally measured soil water content (θm) and εa was strongly linear (0.911

Suggested Citation

  • Kargas, George & Soulis, Konstantinos X., 2019. "Performance evaluation of a recently developed soil water content, dielectric permittivity, and bulk electrical conductivity electromagnetic sensor," Agricultural Water Management, Elsevier, vol. 213(C), pages 568-579.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:568-579
    DOI: 10.1016/j.agwat.2018.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418305353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miller, G.A. & Farahani, H.J. & Hassell, R.L. & Khalilian, A. & Adelberg, J.W. & Wells, C.E., 2014. "Field evaluation and performance of capacitance probes for automated drip irrigation of watermelons," Agricultural Water Management, Elsevier, vol. 131(C), pages 124-134.
    2. Singh, J. & Lo, T. & Rudnick, D.R. & Dorr, T.J. & Burr, C.A. & Werle, R. & Shaver, T.M. & Muñoz-Arriola, F., 2018. "Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil," Agricultural Water Management, Elsevier, vol. 196(C), pages 87-98.
    3. Soulis, Konstantinos X. & Elmaloglou, Stamatios & Dercas, Nicholas, 2015. "Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems," Agricultural Water Management, Elsevier, vol. 148(C), pages 258-268.
    4. Sezen, S. Metin & Yazar, Attila & Eker, Salim, 2006. "Effect of drip irrigation regimes on yield and quality of field grown bell pepper," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 115-131, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, J. & Lo, T. & Rudnick, D.R. & Irmak, S. & Blanco-Canqui, H., 2019. "Quantifying and correcting for clay content effects on soil water measurement by reflectometers," Agricultural Water Management, Elsevier, vol. 216(C), pages 390-399.
    2. Domínguez-Niño, Jesús María & Oliver-Manera, Jordi & Girona, Joan & Casadesús, Jaume, 2020. "Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Lo, Tsz Him & Rudnick, Daran R. & Singh, Jasreman & Nakabuye, Hope Njuki & Katimbo, Abia & Heeren, Derek M. & Ge, Yufeng, 2020. "Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Konstantinos X. Soulis & Emmanouil Psomiadis & Paraskevi Londra & Dimitris Skuras, 2020. "A New Model-Based Approach for the Evaluation of the Net Contribution of the European Union Rural Development Program to the Reduction of Water Abstractions in Agriculture," Sustainability, MDPI, vol. 12(17), pages 1-25, September.
    5. Sebastián Bañón & Jesús Ochoa & Daniel Bañón & María Fernanda Ortuño & María Jesús Sánchez-Blanco, 2020. "Assessment of the Combined Effect of Temperature and Salinity on the Outputs of Soil Dielectric Sensors in Coconut Fiber," Sustainability, MDPI, vol. 12(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domínguez-Niño, Jesús María & Oliver-Manera, Jordi & Girona, Joan & Casadesús, Jaume, 2020. "Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Soulis, Konstantinos X. & Elmaloglou, Stamatios & Dercas, Nicholas, 2015. "Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems," Agricultural Water Management, Elsevier, vol. 148(C), pages 258-268.
    3. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    5. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    6. Zhang, Zhe & Liu, Shengyao & Jia, Songnan & Du, Fenghuan & Qi, Hao & Li, Jiaxi & Song, Xinyue & Zhao, Nan & Nie, Lanchun & Fan, Fengcui, 2021. "Precise soil water control using a negative pressure irrigation system to improve the water productivity of greenhouse watermelon," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    8. Ngouajio, Mathieu & Wang, Guangyao & Goldy, Ronald, 2007. "Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch," Agricultural Water Management, Elsevier, vol. 87(3), pages 285-291, February.
    9. Marjan Aziz & Madeeha Khan & Naveeda Anjum & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim & Siva K. Balasundram & Muhammad Aleem, 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves," Agriculture, MDPI, vol. 12(4), pages 1-14, April.
    10. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    11. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
    12. Alireza Daneshi & Mostafa Panahi & Saber Masoomi & Mehdi Vafakhah & Hossein Azadi & Muhammad Mobeen & Pinar Gökcin Ozuyar & Vjekoslav Tanaskovik, 2021. "Assessment of non-monetary facilities in Urmia Lake basin under PES scheme: a rehabilitation solution for the dry lake in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10141-10172, July.
    13. Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Liang, Yin-Li & Wu, Xing & Zhu, Juan-Juan & Zhou, Mao-Juan & Peng, Qiang, 2011. "Response of hot pepper (Capsicum annuum L.) to mulching practices under planted greenhouse condition," Agricultural Water Management, Elsevier, vol. 99(1), pages 111-120.
    15. Lo, Tsz Him & Rudnick, Daran R. & Singh, Jasreman & Nakabuye, Hope Njuki & Katimbo, Abia & Heeren, Derek M. & Ge, Yufeng, 2020. "Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.
    17. M. Safdar Munir & Imran Sarwar Bajwa & M. Asif Naeem & Bushra Ramzan, 2018. "Design and Implementation of an IoT System for Smart Energy Consumption and Smart Irrigation in Tunnel Farming," Energies, MDPI, vol. 11(12), pages 1-18, December.
    18. Mwinuka, Paul Reuben & Mbilinyi, Boniface P. & Mbungu, Winfred B. & Mourice, Sixbert K. & Mahoo, H.F. & Schmitter, Petra, 2021. "The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L)," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Hodges, Blade & Tagert, Mary Love & Paz, Joel O. & Meng, Qingmin, 2023. "Assessing in-field soil moisture variability in the active root zone using granular matrix sensors," Agricultural Water Management, Elsevier, vol. 282(C).
    20. Hajdu, Istvan & Yule, Ian & Bretherton, Mike & Singh, Ranvir & Hedley, Carolyn, 2019. "Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils," Agricultural Water Management, Elsevier, vol. 217(C), pages 332-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:568-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.