IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v164y2016ip2p235-242.html
   My bibliography  Save this article

Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management

Author

Listed:
  • Nolz, R.
  • Cepuder, P.
  • Balas, J.
  • Loiskandl, W.

Abstract

Monitoring soil water status is a well-known method to efficiently control irrigation in order to optimally meet plant water requirements and at the same time avoid unproductive water losses through deep percolation. A common approach is to keep soil water status within a certain range that is defined via soil-specific unsaturated hydraulic parameters. In this study, water content and matric potential were monitored in a soil profile in a vineyard. The soil hydraulic properties required for irrigation control were determined by water retention analyses using a pressure plate apparatus, and estimated by means of pedotransfer functions. While the soil matric potential sensors delivered calibrated absolute values, their range was limited and soil water dynamics were not always reflected properly. The soil water content probe, on the other hand, properly illustrated soil water dynamics, but the readings were possibly inaccurate as no onsite calibration was executed. Furthermore, the determined unsaturated hydraulic parameters differed considerably depending on the applied method. Alternatively, a modified approach was applied. It was based on measurements of a sensor pair in a representative depth and should combine the advantages of both sensors types. The respective thresholds for irrigation management were determined based on sensor data using in-situ soil water retention functions. The main advantages were that neither field calibration of soil water content sensors nor laborious soil analyses were required. Furthermore, data interpretation was more plausible compared to the standard approach. Due to the reduced sensor setup and the omitted soil sampling and analyses, the modified approach represented a practical and economical alternative as basis for irrigation control.

Suggested Citation

  • Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
  • Handle: RePEc:eee:agiwat:v:164:y:2016:i:p2:p:235-242
    DOI: 10.1016/j.agwat.2015.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 13-28, August.
    2. Girona, J. & Mata, M. & Fereres, E. & Goldhamer, D. A. & Cohen, M., 2002. "Evapotranspiration and soil water dynamics of peach trees under water deficits," Agricultural Water Management, Elsevier, vol. 54(2), pages 107-122, March.
    3. Dabach, Sharon & Shani, Uri & Lazarovitch, Naftali, 2015. "Optimal tensiometer placement for high-frequency subsurface drip irrigation management in heterogeneous soils," Agricultural Water Management, Elsevier, vol. 152(C), pages 91-98.
    4. Soulis, Konstantinos X. & Elmaloglou, Stamatios & Dercas, Nicholas, 2015. "Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems," Agricultural Water Management, Elsevier, vol. 148(C), pages 258-268.
    5. Nolz, R. & Kammerer, G. & Cepuder, P., 2013. "Calibrating soil water potential sensors integrated into a wireless monitoring network," Agricultural Water Management, Elsevier, vol. 116(C), pages 12-20.
    6. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 147-158, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reinhard NOLZ & Willibald LOISKANDL, 2017. "Evaluating soil water content data monitored at different locations in a vineyard with regard to irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(3), pages 152-160.
    2. Ohana-Levi, Noa & Mintz, Danielle Ferman & Hagag, Nave & Stern, Yossi & Munitz, Sarel & Friedman-Levi, Yael & Shacham, Nir & Grünzweig, José M. & Netzer, Yishai, 2022. "Grapevine responses to site-specific spatiotemporal factors in a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    4. Kassaye, Kassu Tadesse & Boulange, Julien & Lam, Van Thinh & Saito, Hirotaka & Watanabe, Hirozumi, 2020. "Monitoring soil water content for decision supporting in agricultural water management based on critical threshold values adopted for Andosol in the temperate monsoon climate," Agricultural Water Management, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Abrisqueta, I. & Vera, J. & Tapia, L.M. & Abrisqueta, J.M. & Ruiz-Sánchez, M.C., 2012. "Soil water content criteria for peach trees water stress detection during the postharvest period," Agricultural Water Management, Elsevier, vol. 104(C), pages 62-67.
    3. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    4. Pascual-Seva, Núria & San Bautista, Alberto & López-Galarza, Salvador & Maroto, José Vicente & Pascual, Bernardo, 2018. "Influence of different drip irrigation strategies on irrigation water use efficiency on chufa (Cyperus esculentus L. var. sativus Boeck.) crop," Agricultural Water Management, Elsevier, vol. 208(C), pages 406-413.
    5. Kassaye, Kassu Tadesse & Boulange, Julien & Lam, Van Thinh & Saito, Hirotaka & Watanabe, Hirozumi, 2020. "Monitoring soil water content for decision supporting in agricultural water management based on critical threshold values adopted for Andosol in the temperate monsoon climate," Agricultural Water Management, Elsevier, vol. 229(C).
    6. Liang, Xi & Liakos, Vasilis & Wendroth, Ole & Vellidis, George, 2016. "Scheduling irrigation using an approach based on the van Genuchten model," Agricultural Water Management, Elsevier, vol. 176(C), pages 170-179.
    7. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 13-28, August.
    8. Mira-García, Ana Belén & Conejero, Wenceslao & Vera, Juan & Ruiz-Sánchez, M.Carmen, 2022. "Water status and thermal response of lime trees to irrigation and shade screen," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    10. Vera, J. & Mounzer, O. & Ruiz-Sánchez, M.C. & Abrisqueta, I. & Tapia, L.M. & Abrisqueta, J.M., 2009. "Soil water balance trial involving capacitance and neutron probe measurements," Agricultural Water Management, Elsevier, vol. 96(6), pages 905-911, June.
    11. Beyá-Marshall, Víctor & Arcos, Emilia & Seguel, Óscar & Galleguillos, Mauricio & Kremer, Cristián, 2022. "Optimal irrigation management for avocado (cv. 'Hass') trees by monitoring soil water content and plant water status," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Nolz, R. & Kammerer, G. & Cepuder, P., 2013. "Calibrating soil water potential sensors integrated into a wireless monitoring network," Agricultural Water Management, Elsevier, vol. 116(C), pages 12-20.
    13. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    14. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    15. Marjan Aziz & Madeeha Khan & Naveeda Anjum & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim & Siva K. Balasundram & Muhammad Aleem, 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves," Agriculture, MDPI, vol. 12(4), pages 1-14, April.
    16. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    17. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    18. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    19. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Novak, V. & Hurtalova, T. & Matejka, F., 2005. "Predicting the effects of soil water content and soil water potential on transpiration of maize," Agricultural Water Management, Elsevier, vol. 76(3), pages 211-223, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:164:y:2016:i:p2:p:235-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.